스토리 홈

인터뷰

피드

뉴스

조회수 1474

8퍼센트 CTO 1년 차 회고

2015년 11월 4일에 8퍼센트에 입사했으니 이제 1년이 되었다. CTO라는 직함을 달고 보낸 지난 1년을 뒤돌아 본다.1년전 첫번째 스프린트나는 무엇을 원했던가?회고를 할 때는 목표를 기준으로 지금을 살펴봐야 한다. 일 년 전에 썼던 8퍼센트에 입사하기까지 라는 글을 다시 꺼내어 보니 당시의 나는 이런 것들을 원했다. 성공하는 회사에 다닌다.개발 조직을 책임 지고 꿈꿔왔던 이상을 실험한다.회사 경영을 경험한다.사회에 도움이 되는 일을 한다.1) 성공하는 회사에 다닌다. 입사 전이라 "성공하는 회사에 다닌다”라고 적었지만 입사를 한 이상 “회사를 성공시킨다”라는 목표로 바꿔서 생각해도 좋겠다.2015년 10월 말을 기준으로 78.4억의 누적 대출액이 현재 기준으로 480억 가량 되니 지난 1년 동안 약 400억의 돈을 투자자로부터 대출자에게로 연결했다. 나는 이 돈의 크기가 정확히 8퍼센트라는 회사의 사회적인 영향력 그리고 고객들이 회사에 갖는 신뢰의 크기라고 생각한다. 또한 회사의 성공의 척도이다.그럼 이 400억이 성공을 이야기할 때 충분한가에 답을 해야 할터인데, 아직은 많이 부족하다. 하지만 어디인지 모르는 성공이라는 것에 다가갈 확률이 일 년 전에 비해 높아졌느냐라고 묻는다면 "그렇다"라고 자신 있게 말하겠다. 그리고 나 또한 그 확률을 높이는 것에 공헌하고 있다.입사할 당시에 대표님이 내세웠던 조건 중 하나가 올해 말 기준으로 500억이었는데, 그 기준은 넘기게 되었으니 80점을 주자.2) 개발 조직을 책임 지고 꿈꿔왔던 이상을 실험한다.입사 전에는 개발 조직만 맡을 것이라고 생각했으나, 현재는 더 넓은 프로덕트를 만드는 조직을 책임지고 있다. 1년 전에 꿈꿨던 이상이라는 것은 멋지게 일하는 조직이다. 입사 초기에는 이를 위해 꽤나 많은 노력을 했다. 회사 자체가 백지상태이기도 했고 의욕도 충만했다. 하지만 시간이 지나면서 나도 모르게 안주하게 되고 더 잘하기 위한 노력에 게을러졌다. 반성하자. 그래도 일 년 동안 데모를 한 번도 빠지지 않고 34차례 진행했다. (종종 프로젝트 진척이 잘 되지 않으면 데모에서 도망가고 싶다) 그리고 주기가 끝날 때마다 프로세스 개선을 위한 회고 회의를 해왔다. 비록 그 과정에 보완할 점은 많으나 포기하지 않고 프로세스를 일 년 동안 유지한 것에 점수를 주고 싶다. 이상에는 아직 멀었으나 이 조직이 내가 많은 것들을 실험할 수 있고, 그런 설득만 할 수 있다면 그 실험에 기꺼이 동참해 줄 수 있는 조직이라는 것을 깨달았다. 80점으로 시작해서 50점까지 내려갔다가 최근에 10점 정도를 얻었다. 60점을 준다.3) 회사 경영을 경험한다. 초기에 대표님의 신뢰를 얻는데 까지 시간이 꽤 걸렸다. 지금 생각해보면 서로 간의 신뢰를 쌓는데 시간이 걸리는 것은 자연스러운 것인데, 초기에는 의욕이 앞섰다. 왜 내게 더 많은 것을 맡기지 않는지가 불만스러웠다. 대표님이 내리는 결정의 많은 부분에 의심이 들었으며 딴지를 걸었다. 하지만 지금은 대표님의 선택과 결정이 대부분 이해되고 신뢰가 간다. 그리고 대표님이 내게 많은 것을 위임하고 믿어주는 것을 느낀다. 합이 맞아간다.생각보다 회사는 시장의 시간에 쫓겨  부족한 정보를 가지고 결정을 내려야만 했다. 회사의 결정이 모든 것을 좌우한다고 생각했었지만 이제는 결정에 따른 실행이 더 중요하다는 것을 알게 되었다. 4) 사회에 도움이 되는 일을 한다. 사회에 도움이 되는 일을 하는 것은 이 회사에 입사했을 때 결정이 되었다. 회사의 성장이 사회에 미치는 긍정적인 영향과 비례한다는 생각에는 변함이 없다. 이 회사의 존재가 이미 사회에 많은 영향을 미쳤다. 그리고 대부분은 긍정적인 영향이라고 생각한다. 90점을 주겠다.일하는 것의 변화 1) 일하는 양의 변화초기 반년은 후회가 없을 정도로 최선을 다해서 살았다. (내가 인생에서 이런 말을 할 수 있는 시기가 몇 번 없다.) 내 역량의 100%를 다하며 살았다. 그 6개월을 지난 이후에는 살짝 기어를 낮췄다. 좋게 말하면 마라톤을 위한 모드로 바꿨다고도 할 수 있고 어쩌면 6개월의 달리기로 조금 지쳤는지도 모르겠다. 2) 시간 분배의 변화처음 입사했을 때에는 시간의 50%를 개발에 사용했지만 지금은 10% 밖에 사용하지 못하고 나머지 40% 를 프로젝트 관리에 사용하고 있다. 30% 정도를 팀에 쓰고 있는데 처음에는 팀의 구조를 갖추는 데 사용했다면 지금은 팀을 운영하는 데 사용한다. 대체로 자리에 앉아 있는 시간이 많이 줄었고 내외부 사람들과 커뮤니케이션하는 시간이 늘어났다. (슬랙 통계를 보니 내가 압도적인 수다쟁이더라)나는 무엇을 배웠을까? 1) B2C 사업에서의 배움 기존에 일했던 회사는 B2B 회사였다. 손에 꼽을 수 있는 고객을 만족시키면 되었고 상대적으로 그들이 원하는 것은 명확했다. 혹은 커뮤니케이션을 통해 요구사항을 명확하게 만들 수 있었다. 상대적으로 긴 호흡으로 일을 했고, 성능이 중요했다.B2C 서비스는 달랐다. 고객은 어떤 면에서는 전혀 이성적이지 않았다. 놀라운 일이었다. 하지만 대부분 우리의 서비스는 냉정하게 평가되었다. 고객의 반응은 즉각적이지만 그 반응을 옳게 해석해서 제품에 반영하는 것은 어렵구나라는 것을 느꼈다. 지금 이 순간 고객을 최대로 만족시키는 선택이 회사에 있어 항상 옳은 선택은 아니라는 것도 알았다. 내가 개발하고 있는 서비스를 사용하는 많은 사람들이 있다는 것 그리고 사회에 직접적인 영향을 미친다는 것이 제품 개발을 지속할 수 있는 큰 동기가 된다는 것을 느꼈다.2) 프로덕트 책임자로서의 배움제품을 책임지고 있는 사람으로 B2C 서비스에 필요한 많은 역량이 부족하다는 것을 알게 되었다. 그리고 나의 부족한 역량이 완성도가 떨어지는 서비스에 많은 영향을 주고 있다는 것 또한 알게 되었다. 기획자와 일하는 경험, 디자이너와 일하는 경험 모두 처음이었다. 이를 통해 같은 회사에서 하나의 제품을 만들지만 그것을 바라보는 다양한 시각이 존재한다는 것을 알게 되었다.지난 회사의 CTO를 보며 제품의 문제를 어떻게 이렇게 잘 찾아낼까 생각했었는데 나 또한 그렇게 되더라. 통찰력이 아니라 관심을 얼마나 가지는가, 얼마나 책임감을 가지고 제품을 바라보는가에 대한 차이라는 것을 알게 되었다. 많은 기술적, 비즈니스에 기반한 결정을 했고, 그 결정의 결과를 지켜보고 있다. 그것에서 배웠다.3) 프로젝트 관리자로서의 배움 프로덕트팀이 일하는 방식으로 스크럼을 도입했다. 스크럼을 할 때 ScrumBut(우리는 스크럼을 해요. 하지만 이것저것은 하지 않아요.)을 유의하라는 말을 하는데 스크럼에서 요구하는 것들 중에서 하지 못한 것들이 꽤 있다. 예를 들면 업무의 양을 측정해서 번다운 차트를 제대로 그려가며 팀의 속도를 측정하거나,  업무를 항상 우선순위 기반으로 하는 것 등이다. 처음에는 시도했었으나 몇 번의 스프린트 후에는 적당히 스크럼을 적용하고 말았다. 프로젝트를 잘 관리하기 위해서는 많은 노력이 필요하다는 것을 알면서도 필요한 만큼의 노력을 기울이지 않은 것을 반성한다. 코딩을 포함한 회사에 많은 재미있을 것들에 우선순위를 두고 재미없음을 이유로 중요한 프로젝트의 관리를 뒤로 미루었다.4) 도구의 도입에서의 배움여러 가지 도구들을 도입했다. 모든 커뮤니케이션을 슬랙을 통하도록 여러 가지를 도입했다. 아마 우리 회사만큼 슬랙을 열심히 그리고 잘 쓰는 회사가 흔치 않을 것이라 생각한다.  컨플루언스를 도입해서 문서를 쓰는 문화를 만들어 갔다. 여전히 내가 제일 많은 문서를 쓰고, 대부분 내가 위키 가드닝(문서의 내용과 구조를 재조직하는 일)을 하고 있지만 사람들이 위키를 통해서 커뮤니케이션하는 것을 자연스럽게 생각하는 것을 보면 뿌듯하다. 트렐로도 도입해서 사용하고 있다. 최근까지는 엉성하게 쓰고 있었는 데 사용 가이드라인을 잡아서 한번 공유했으니, 앞으로 팀에 녹아들 것으로 기대한다.이렇게 도구를 도입하는 과정에서 변화를 이끌어 내는 방법을 연습했다. 사람들은 스스로 필요성을 느껴야 변화를 받아들인다. 탑다운식의 강압적인 도입은 결국 실패한다. 구성원들이 도구가 업무에 도움이 되는구나 라는 것을 느낄 때까지 선구자가 많은 노력을 기울여야 한다는 것을 알게 되었다. 사람들은 자신들이 필요한 정보를 컨플루언스에서 찾을 수 있을 때 자신도 정보를 컨플루언스에 남기기 시작했다. 자신들의 요청이 트렐로를 통해서 잘 처리된다는 것을 느꼈을 때 새로운 업무를 트렐로를 통해 전달해 주었다. 5) 개발에서의 배움초반에는 영역을 가리지 않고 개발을 했었다. 인프라 쪽도 정리하고 대출 프로세스도 개발하고 다른 금융업체와 연동도 하고 그리고 개발 환경도 갖추었다. 하지만 1년이 지난 지금 이미 내가 작성했던 코드는 절반 이상 다른 분들의 더 나은 코드로 대체되었다.타 금융권과 연계해서 개발을 하면서 이쪽 동네가 얼마나 기술 변화에 뒤쳐져 있는지를 알게 되었다. 취미로만 해봤던 웹 개발을 제품 레벨로 처음 해봤다. 프런트앤드 개발의 중요성과 어려움을 알게 되었다.개발팀의 효율을 올릴 수 있는 테스팅, 코드 리뷰, CI의 사용 등을 실제로 적용해 볼 수 있었다.마지막으로 회사에 좋은 분들을 모셔오면서 내가 얼마나 부족한 개발자인지를 알게 되었다.6) 금융업에서의 배움회사의 절반인 프로덕트를 만드는 사람들은 대부분 스타트업 출신이고, 나머지 절반은 금융권 출신으로 구성되어 있다. 금알못(금융을 알지 못하는 바보)으로 출발한 내가 이제 그들의 대화에 낄 수 있는 정도는 되었다. 하지만 여전히 하루가 멀다 하고 새로운 용어와 개념을 만나고, 대화가 끝나면 용어를 검색해보기 일쑤다.금융 동네는 어떤 경우에는 모든 것에 이유가 있어 딱딱 맞아떨어지는 것처럼 보이다가도 어떤 경우에는 도대체 이해가 안 되는 경우를 만나기도 한다. 여하튼 지난 일 년 동안 새로운 분야에서 일하면서 모르던 것(정확히는 모르는지도 몰랐던 것)들을  알아가는 즐거움을 느꼈다. 다음 회사를 가게 된다면 금융이 아닌 또 다른 분야에서 일하는 게 좋겠다는 생각이 들었다. 7) 채용에서의 배움입사했을 때 개발자 2명, 기획자 1명, 디자이너 1명이던 팀은 이제 개발자 9명에 기획자 2명, 디자이너 1명인 12명 팀이 되었다. 이 중 개발자 6명과 기획자 1명을 직접 채용했다. 이 과정에서 스타트업 채용의 어려움을 알게 되었고 조그만 노하우를 얻게 되었다. 그리고 채용에 따르는 책임이라는 것도 알게 되었다.채용 글을 쓰고 페이스북에 광고를 하고 구인 사이트에 올려보고 했지만 결국 대부분의 채용이 소개로 이루어졌다. 좋은 사람은 쉽게 다른 회사에 지원하지 않는다. 채용한 사람의 30배가 넘는 이력서를 받았고 5배가 넘는 면접을 보았다. 하지만 결국 소개를 받아 채용하는 것이 거의 유일한 방법인 것 같다. 회사에 대해 꾸준히 글을 써오고 있는데 이것이 채용에 많은 도움이 되었다.프로덕트팀 구성원은 내가 직접 채용을 결정하다 보니 이효진 대표에 의해서 내 인생이 바뀐 것처럼, 내가 채용한 사람들의 인생을 바꿨다. 그들이 자신들의 능력을 발휘해서 8퍼센트에 공헌할 수 있도록 하고 회사를 성공시켜서 그들의 노력에 답해 줄 수 있어야 한다는 생각을 한다. 8) 관리자로서의 배움 지난 회사에서 5명의 팀 리더를 할 때에는 내가 개발자인가 관리자인가라고 물으면 답하기가 쉽지 않았다. 하지만 지금 내게 묻는다면 나는 관리자라고 답하겠다. 나는 내 노력 50%를 들여서 전 구성원의 효율을 10% 더 올릴 수 있는 사람이 되어야 한다. 좋은 관리자였냐라고 하면 그렇지는 못했던 것 같다. 특히 구성원들에게 제때 필요한 피드백을 하지 못한 것은 아쉽다. 쓴소리를 해야 하는 위치에 있음에도 좋은 사람으로 남고 싶어서 적절한 때 적절한 피드백을 하지 못했다. 특히 같은 팀에 있는 디자이너와 기획자에게는 미안한 마음이다. 그들의 결과물에 대한 피드백도 쉽지 않았고, 커리어에 대해 해줄 수 있는 조언도 없었다. 그저 그들이 맡고 있는 좋은 프로덕트를 통해 성장해 나가길 바랄 뿐이다. 회사에서 1년 동안 "함께"라는 것을 기업 문화에 심기 위해 노력했다. 내가 시도했던 것들 중에 어떤 것들은 문화가 되어 정착이 되었고, 어떤 것들이 도태되어 사라졌다. 그 기준은 재미였다. 사람들에게 재미를 줄 수 있었던 슬랙의 #study 채널을 통해서 함께 공부하기, 브런치 매거진을 통해 함께 글쓰기, 2주에 한 번씩 오는 특별한 점심, 함께 하는 워크샵은 문화로 살아남았고 나머지는 사라졌다.  잃은 것은 무엇인가?1) 개발자로서의 경쟁력 개발자로서 경쟁력이 떨어지고 있다. 일반적으로 개발자가 망하는 과정을 다음과 같이 이야기한다.개발을 열심히 잘 하고 있음나이가 들면서 회사에서 관리자를 하라고 함관리자를 했더니 개발할 시간이 없어서 개발 실력이 떨어짐그 회사를 나오고 났더니 찾아 주는 곳이 없음치킨집내가 이런 과정으로 가고 있는 것은 아닐까? 에 대한 불안감이 있다. 전 회사에서는 새롭게 쏟아지는 기술들을 따라가며 공부를 해왔는데, 이제는 그런 공부 대신 당장 회사에 필요한 공부를 하게 된다. 이렇게 기술적인 경쟁력을 잃어 가게 되면 앞으로 먹고사는데 문제는 없을까?라는 생각도 들고, 당장 CTO라는 자리에서 옳은 결정들을 할 수 있을까 하는 생각 또한 든다.  2) 나와 가족체중을 얻었다. 운동할 시간이 없었기보다는 운동할 마음의 여유가 없었다. (둘 다 핑계이기는 매한가지다.) 체중이 늘어나다 보니 나 자신에 대한 자신감이 좀 떨어졌다. 가족들과는 입사 전에 비해 많은 시간을 보내지 못한다. 시간을 함께 보낼 때에도 핸드폰으로 슬랙을 확인하기 일쑤였다. 그리고 육체적/정신적으로 지친 상태라 100% 마음껏 놀아주지 못했다. 총평8퍼센트에 입사하기 전 일 년보다 훨씬 더 치열하게 살았다는 것만으로도 만족할 수 있는 1년이다. 내가 원하던 자리에서 원하던 경험을 할 수 있는 기회를 갖게 된 것만으로도 8퍼센트와 이효진 대표에게 감사한다. 자신 있게 추진하던 일 중 용두사미가 되어 버린 것들은 아쉽다. 하지만 용기 있게 많은 것들을 시도한 것은 잘했다. 내가 잘하는 것과 못하는 것이 여실히 드러난 1년이었다.   다음 1년은 무엇을 목표로 해야 할까?1) 회사를 성공시키자회사의 성장과 성공에 기대고 있는 것들이 너무나 많다. 지난 1년이 잽으로 탐색으로 해보는 1라운드였다면, 앞으로의 1년은 제대로 주먹을 뻗어보고 맞아보는 2라운드가 될 것으로 기대한다.  2) 그릇의 크기를 늘이자내 그릇의 크기에 따라 좋은 프로덕트, 구성원들의 성장, 채용이 좌우된다는 것을 알게 되었다. 그리고 입사 전보다 내가 갖춰야 할 역량들이 훨씬 명확해졌다. 꾸준히 갈고닦자.3) 더 멋지게 일하는 팀을 만들자 점점 손발이 맞아 간다. 더 많은 기회를 제공하고, 더 많은 것을 위임하자. 그리고 피드백을 잘하자. 이를 위해 끊임없이 실험하자.4) 손은 항상 더럽게지난 회사 CTO 님의 가장 큰 장점이 항상 손을 더럽게 유지하는 것이었다. 다시 말해 작더라도 일부 모듈을 직접 개발하고 다른 사람들의 코드들을 충분히 이해하셨다. 나 또한 다른 많은 일들이 있더라도 하루에 한 줄의 코딩은 할 수 있도록 하고, 다른 사람의 코드를 리뷰하는 데에도 시간을 쏟아야 하겠다.다시 맞이하는 1년회고를 통해 순식간에 지나간 지난 1년이 가볍지 않았다는 것을 알게 되었다. 다행이다. 이 글을 작성하면서 1년 전에 쓴  8퍼센트 입사 날을 읽어 보았다. 그날만큼은 아니지만 가슴이 두근거린다. 여전히 8퍼센트는 내게 모험이고 도전이다. 이제 새로운 마음으로 1년 1일 째를 맞이해야겠다. 지금 기분이라면 1년 뒤 더 멋진 회고글을 쓸 수 있을 것 같다.30번째쯤 스프린트의 데일리 미팅저와 함께 하고 싶은 개발자 분은 지원해 주세요! 기다리고 있습니다.#8퍼센트 #에잇퍼센트 #CTO #기업문화 #조직문화 #팀문화 #후기 #돌아보기 #개발자
조회수 4921

Gradle Dependency 분리하기

본 포스팅은 아래 코드를 보시면 좀 더 이해하기 쉽습니다.build.gradledependencies-variable.gradledependencies-classpath.gradledependencies-app.gradleGradle 의 역할Gradle 은 이제 안드로이드 개발에 있어서 그 중심이 되는 빌드 환경입니다. 안드로이드 빌드에 대한 기본 설정 뿐만 아니라 빌드에 필요한 Task 를 지정하거나 의존성을 추가할 수 있습니다.특히 의존성에서 일반적인 서비스들은 다양한 오픈소스를 활용하게 됩니다. 네트워크 라이브러리, 이미지 라이브러리, DI 라이브러리, Support 라이브러리,Play-Service 라이브러리 등등 이젠 프로젝트를 시작함에 있어서 기본적으로 10개 이상의 라이브러리를 추가하게 됩니다. 이러한 라이브러리들이 많아질수록 필연적으로 빌드 스크립트가 길어지게 됩니다. 이는 나중에 빌드에 관련된 코드를 추가/수정할 때 유지보수에 영향을 끼치게 됩니다.Gradle 의존성 분리하기토스랩에서는 꽤 많은 숫자의 라이브러릴 사용하고 있습니다. 테스트용 라이브러리들까지 포함해서 60여개의 라이브러리를 쓰고 있습니다. 이러한 라이브러리 코드들이 1개의 빌드 스크립트 안에 포함되어 진다면 라이브러리의 버전을 변경하거나 수정하는 작업을 할 때에는 불가피하게 시간이 소요될 수 밖에 없습니다.그에 따라 Gradle 에서 라이브러리들을 변수화 해서 분리하는 작업을 하였습니다.1. 라이브러리 변수화 하기ext { retrofit = 'com.squareup.retrofit2:retrofit:2.1.0' retrofit2_gson = 'com.squareup.retrofit2:converter-gson:2.1.0' retrofit2_rxjava2 = 'com.jakewharton.retrofit:retrofit2-rxjava2-adapter:2.1.0' } 가장 간단한 변수화였습니다. 하지만 Retrofit 은 관련 라이브러리들이 함께 수반되기 때문에 버전명을 다시 분리하였습니다.2. 라이브러리 버전 변수화 하기ext { retrofit_version = '2.1.0' retrofit = "com.squareup.retrofit2:retrofit:$retrofit_version" retrofit2_gson = "com.squareup.retrofit2:converter-gson:$retrofit_version" retrofit2_rxjava2 = "com.jakewharton.retrofit:retrofit2-rxjava2-adapter:$retrofit_version" } 하지만 버전명과 라이브러리이름이 함께 있는 것이 깔끔해보이진 않습니다. 그래서 아래와 같이 바꿨습니다.3. 라이브러리 이름과 버전의 분리ext { retrofit = '2.1.0' } ext.dependencies = [ retrofit2 : "com.squareup.retrofit2:retrofit:$ext.retrofit", retrofit2_gson : "com.squareup.retrofit2:converter-gson:$ext.retrofit", retrofit2_rxjava2 : "com.jakewharton.retrofit:retrofit2-rxjava2-adapter:$ext.retrofit_rxjava2", ] 실제에는 다음과 같이 사용하면 됩니다.dependencies { compile rootProject.ext.dependencies.retrofit2 compile rootProject.ext.dependencies.retrofit2_gson compile rootProject.ext.dependencies.retrofit2_rxjava2 } 이제 라이브러리를 변수화 해서 분리를 하였습니다.이제 변수로 지정한 라이브러리들은 build.gradle 파일안에 존재하게 됩니다.// build.gradle ext { retrofit = '2.1.0' } ext.dependencies = [ retrofit2 : "com.squareup.retrofit2:retrofit:$ext.retrofit", retrofit2_gson : "com.squareup.retrofit2:converter-gson:$ext.retrofit", retrofit2_rxjava2 : "com.jakewharton.retrofit:retrofit2-rxjava2-adapter:$ext.retrofit_rxjava2", ] buildscript { // blah blah } 라이브러리가 3개뿐이니 깔끔해보이는군요. 하지만 토스랩의 라이브러리는 60여개 입니다. 변수명도 60여개라는 말이죠. 그래서 라이브러리 변수들만 파일을 분리하기로 했습니다.4. 라이브러리 변수를 파일로 분리하기// dependencies-variable.gradle ext { retrofit = '2.1.0' } ext.dependencies = [ retrofit2 : "com.squareup.retrofit2:retrofit:$ext.retrofit", retrofit2_gson : "com.squareup.retrofit2:converter-gson:$ext.retrofit", retrofit2_rxjava2 : "com.jakewharton.retrofit:retrofit2-rxjava2-adapter:$ext.retrofit_rxjava2", ] // build.gradle apply from :'dependencies-variable.gradle' buildscript { // blah blah } 이제 좀 교통정리가 되어가는 기분이네요.하지만 app 의 build.gradle 을 보았습니다.// app 의 build.gradle apply plugin: 'com.android.application' dependencies { // 라이브러리 60개 compile rootProject.ext.dependencies.library.retrofit2 compile rootProject.ext.dependencies.library.retrofit2_gson compile rootProject.ext.dependencies.library.retrofit2_rxjava2 } android { // 중략 } 뭔가 잘못되어 가고 있습니다. 여전히 dependencies 가 큰 부분을 차지하고 있습니다.5. app.dependencies 분리하기이제 dependencies 를 분리할 차례입니다.// dependencies-app.gradle repositories { jcenter() } dependencies { compile fileTree(dir: 'libs', include: ['*.jar']) compile rootProject.ext.dependencies.library.retrofit2 compile rootProject.ext.dependencies.library.retrofit2_gson compile rootProject.ext.dependencies.library.retrofit2_rxjava2 compile rootProject.ext.dependencies.library.okhttp3 compile rootProject.ext.dependencies.library.okhttp3_logging compile rootProject.ext.dependencies.library.stetho_okhttp3 } // app 의 build.gradle apply from: 'dependencies-app.gradle' 이제 dependencies 와 관련된 스크립트가 분리되었습니다.하지만 저 apply from 이 항상 app 의 build.gradle 에 따라 붙어야 하는 것이 아쉽습니다. 그래서 buildscript 에 아예 추가하기로 하엿습니다.6. 빌드 스크립트에 dependencies 추가 동작하기먼저 빌드 스크립트용 스크립트를 만들겠습니다.// dependencies-classpath.gradle rootProject.buildscript.repositories { jcenter() } rootProject.buildscript.dependencies { classpath rootProject.ext.dependencies.classpath.android } 그리고 buildscript 가 시작될 때 모든 dependencies 스크립트가 인식할 수 있게 하겠습니다. 인식할 스크립트는 다음과 같습니다.dependencies-variable.gradle - 라이브러리 변수 저장dependencies-classpath.gradle - 빌드용 스크립트 저장dependencies-app.gradle - 라이브러리 추가 스크립트 저장rootProject 의 build.gradle 를 아래와 같이 변경합니다.// rootProject 의 build.gradle buildscript { apply from: "dependencies-variable.gradle" apply from: "dependencies-classpath.gradle" } apply from: 'dependencies-app.gradle' 위와 같이 변경을 하면 빌드스크립트가 동작하는 시점에 변수를 인식하고 빌드용 스크립트를 인식합니다.하지만 앱용 라이브러리 추가 스크립트는 아직 준비가 덜 되었습니다. “app” 프로젝트가 인식이 된 시점에 라이브러리가 추가되어야 하기때문에 처음 만들었던 스크립트로는 한계가 있습니다.그래서 아래와 같이 변경하겠습니다.// dependencies-app.gradle rootProject.allprojects { project -> if (project.name == 'app') { project.afterEvaluate { repositories { jcenter() } dependencies { compile fileTree(dir: 'libs', include: ['*.jar']) compile rootProject.ext.dependencies.library.retrofit2 compile rootProject.ext.dependencies.library.retrofit2_gson compile rootProject.ext.dependencies.library.retrofit2_rxjava2 } } } } afterEvaluate 는 프로젝트의 인식이 완료되면 동작이 되는 함수이기 때문에 모든 것이 끝나고 dependencies 가 추가되는 것으로 이해하시면 됩니다.정리위의 과정을 거침으로써 gradle 파일은 좀 더 나뉘었지만 app 의 build.gradle 은 안드로이드 프로젝트 그 자체에 집중 할 수 있도록 하였습니다.이렇게 나누었던 본래의 목적은 의존성 라이브러리와 코드 품질 관리용 스크립트가 1개의 스크립트 파일에 담겨지면서 관리하는 데 있어서 큰 문제가 발생하게 되었습니다. 그에 따라 각각을 나누고 그 목적에 맞도록 각가의 파일 만들었습니다.라이브러리의 변수용 파일buildscript 용 classpath 를 관리하는 파일본 프로젝트의 라이브러리 의존성 관리 파일참고 소스Github : https://github.com/ZeroBrain/DataBind-MVVM-Sample#토스랩 #잔디 #JANDI #개발 #개발후기 #인사이트
조회수 1219

단일 TABLE을 SELECT하자!

OverviewDB를 다뤄봤다면 SELECT문도 아실 겁니다. 가장 먼저 접하는 명령어 중에 하나이기도 하죠. 보통은 아래처럼 사용합니다. SELECT문SELECT     * FROM 테이블명  ; 명령을 주면 지정한 테이블에 저장된 모든 내용을 검색합니다. 이번 글에서는 테이블을 만들고 SELECT하는 과정을 다뤄보겠습니다. DB는 MySQL 5.6을 기준으로 하고, Tool은 MySQLWorkbench를 사용하겠습니다.Query, 너란 녀석테이블은 위와 같이 생성할 수 있습니다. 위의 내용은 MySQLWorkbench를 이용해 Model을 표시하면 아래와 같습니다. 구성원의 정보를 저장하도록 했고, 컬럼마다 의미를 갖게 됩니다. MBR_ID (구성원 아이디) : DB에서 구성원을 식별하는 아이디MBR_INDFY_NO (구성원 식별 번호) : 구성원을 실제 구별하는 번호로 과거에는 주민등록번호가 많이 사용되었고, 요즘은 e-mail 이 많이 사용됩니다.MBR_NM (구성원 명) : 구성원의 이름 테스트 데이터를 입력해 실행하면 어떤 결과가 나오는지 보겠습니다.가장 기본적인 SELECT문 실행계획을 보면 아래와 같이 나옵니다.실행 계획은 DB가 어떻게 Query를 수행할 건지 보여줍니다. Query가 복잡해지면 실행 계획을 보면서 Query가 올바르게 작성됐는지 확인하고 필요하다면 Query를 수정해야 합니다. DB를 시작할 때부터 실행 계획을 보는 습관을 기르는 게 중요한 이유입니다. 각 항목에 대한 설명id : SELECT 문에 있는 순차 식별자로 Query 를 구분하는 아이디select_type : SELECT의 유형SIMPLE : Subquery나 union 이 없는 단순한 SELECTtable : 참조되는 테이블의 명칭TB_MBR_BAS : 참조되는 테이블명type : 검색하는 방식ALL : TABLE의 모든 ROW를 스캔 위의 이미지는 임의로 만든 자료를 이용해 Query를 실행한 결과입니다. 실행 계획은 TABLE : TB_MBR_BAS 를 TYPE : ALL 전체 검색한다고 나옵니다. 실행한 내용도 같습니다. 여기서 MBR_NM 이 “나서영”인 자료를 검색해볼까요. WHERE 조건이 들어가자 실행 계획도 내용이 변경되었습니다. rows와 Extra에도 값이 있는데요. 두 항목을 잠시 짚고 넘어가겠습니다. rows : Query를 수행하기 위해 접근해야 하는 열의 수Extra : MySQL 이 Query 를 수행할때의 추가 정보Using where : Query 수행시 TABLE에서 값을 가져와 조건을 필터링 함 위의 결과처럼 전체를 검색해 필요한 자료만 추출하는 것을 FULL TABLE SCAN or FULL SCAN 이라고 합니다. 그러나 FULL SCAN은 성능이 좋지 않기 때문에 우선 꼭 필요한 Query인지 검토해야 합니다. 보통 MBR_NM에 INDEX를 추가해서 해결하는데요. INDEX를 추가해서 같은 Query를 수행하면 실행 계획은 어떻게 달라질까요. 분명 같은 Query였는데 INDEX에 따라 실행 계획이 변경된 걸 알 수 있습니다. INDEX를 추가해도 수행한 결과는 같지만 검색 속도에 많은 차이가 있습니다. 각 항목에 대한 설명type - ref : 인덱스로 자료를 검색하는 것으로 현재는 매칭(=) 자료 검색을 나타냄possible_keys : 현재 조건에 사용가능한 INDEX를 나타냄(인덱스가 N개일 수 있음) IX_MBR_BAS_02 : 현재 조건에 사용 가능한 INDEXkey : Query 수행시 사용될 INDEX (possible_keys 가 N 개일 경우 USE INDEX, FORCE INDEX, IGNORE INDEX 로 원하는 INDEX 로 바꾸어 수행할수 있음)key_len : 수행되는 INDEX 컬럼의 최대 BYTE 수를 나타냄152 : 수행되는 INDEX 컬럼의 BYTE 수가 152ref : INDEX 컬럼과 비교되는 상수 여부 or JOIN 시 선행 컬럼 constant : 상수 조건으로 INDEX 수행rows : 678 : 678 rows 접근하여 값을 찾음Extra : using index condition : INDEX 조건에 대하여 스토리지 엔진이 처리(MySQL의 구성에서 스토리지 엔진과 MySQL 엔진이 통신을 주고 받는데 스토리지 엔진에서 처리 하여 속도가 향상됨) ConclusionINDEX가 없으면 결과가 나오기까지 5초 정도 걸리지만, 반대로 INDEX가 있으면 1초 안에 결과가 나옵니다. 별거 아닌 것 같아 보이지만 실무에서는 엄청난 차이입니다. Query를 작성할 때 실행 계획을 확인하고 조금이라도 빨리 결과가 나올 수 있도록 하는 것이 중요하기 때문이죠. 다음 글에서는 단일 TABLE 을 SELECT하는 것을 주제로 이야기를 나눠보겠습니다. 무사히 SELECT하길 바라며.글한석종 부장 | R&D 데이터팀[email protected]브랜디, 오직 예쁜 옷만#브랜디 #개발문화 #개발팀 #업무환경 #인사이트 #경험공유
조회수 669

오픈서베이가 구성원과 함께하는 방식, 병특 Z세대에게 묻다

끊임없는 자기 계발과 성장 욕구는 Z세대의 특징이라고들 합니다. 약관 20세에 병역특례로 입사해 2년째 오픈서베이의 Z세대를 대표하는 김승엽 웹 프론트엔드 개발자(이하 레드)도 그렇습니다. ‘나이에 비해 잘한다’는 ‘아직 잘 못 한다’는 뜻이라며, 달콤한 퇴근 후 시간을 방통대 강의와 과제에 투자하고 있죠.  원동력이 무엇인지 물으니, 그도 얼마 전까지는 게으른 집고양이처럼 사는 게 꿈이었다고 합니다. 직원들을 진정으로 위하는 회사의 모습과 형·누나·아빠뻘의 구성원과 일하며 받은 좋은 자극 덕에 향상심이 자라났다고 하죠. Z세대의 마음을 울린 회사의 모습은 무엇일까요?       오픈서베이 김승엽(레드) 웹 프론트엔드 개발자   레드, 안녕하세요!  안녕하세요. 오픈서베이 웹 프론트엔드 개발을 담당하는 레드입니다. 오픈서베이 DIY 리뉴얼, 랜딩페이지 등 오픈서베이의 각종 웹페이지 개발을 맡고 있습니다. 오픈서베이에서 병역특례 복무 중이기도 하고요(웃음).   2년 전 스무살 나이로 입사했는데, 실은 오픈서베이도 2번째 회사라면서요. 맞아요. 고등학생 때 바로 취업을 했거든요. 특성화 고등학교에 다니면서 프로그래밍을 배웠어요. 배우다 보니 재미가 붙어서 친구들이랑 프로젝트도 해보고 교내 대회에도 나갔고요. 그때 대학교에 진학하기 보다는 빨리 취업해서 실무에서 배우고 성장하는 게 더 좋을 것 같다고 생각했던 것 같아요. 또 저희 학교 특성 상 졸업 전에 다양한 회사에서 구인 행사를 하러 와요. 전 그때 한 스타트업에서 병역특례 지원 해준다는 말만 듣고 멋모르고 첫 취업을 했어요. 아직 병특 지정 업체도 아니었는데, 입사만 하면 병특 업체 지원 해준다는 말만 믿고 순진했었죠.  그렇게 멋모르고 1년 정도 다녔더니 대표님이 병특 업체 선정 안 됐는데 더 신청한다고 될지 모르겠다고 하더라고요. 군대는 각자 일이니 스스로 해결 방법을 찾으라면서요. 그때 회사가 말하는 성장에 대한 비전이나 직원과의 약속이 현실성 없는 허황된 말이라고 생각했던 것 같아요. 그렇게 첫 회사에 실망해서 이직한 곳이 오픈서베이입니다.    첫 회사에서의 경험으로 이직 시 고려요소가 좀 달라졌나요? 조건이 까다로워졌다기보다는 회사에 바라는 게 줄었어요. 그냥 내가 다니는 동안 배울 게 있는 회사였으면 좋겠다는 생각만 있었어요. 병특 지원이 급했을 때라 더 그랬던 것도 같아요(웃음). 그런데 오픈서베이를 다니면서는 좋은 회사에 대한 생각이 또 조금씩 달라졌어요. 예전에는 천국 같은 회사에 대한 환상이 있었는데, 지금은 회사는 천국일 수 없다고 생각하는 편이거든요. 일을 하는 곳이 천국 같을 순 없으니까요.   그럼 정말 현실적으로 좋은 회사가 뭘까 생각해보게 되겠군요. 맞아요. 저는 열심히 살아야겠다는 생각이 들게 하는 회사가 좋은 회사라고 생각해요. 그런 면에서 오픈서베이는 정말 좋은 회사 같아요. 제가 계속 더 잘해야겠다는 자극을 받게 하거든요. 특히 함께 일하는 팀원들에게 긍정적인 자극을 많이 받는 편인 것 같아요.  조셉(김경만 안드로이드 개발자 겸 오베이 PM)이 입사하신 지 얼마 안 돼서 개발팀 세미나를 했을 때가 처음으로 충격을 받았어요. 저는 주제와 내용 자체가 어려워서 이해하기 힘들었는데 그걸 다 소화해서 발표하는 모습을 보면서 경각심이 생기더라고요.   조셉은 어떤 주제로 개발팀 세미나를 했을까요? (클릭)   아무래도 완전 경력자보다는 비슷한 또래나 경력을 가진 분들에게서 더 자극을 받나 보군요. 저는 그런 것 같아요. 그래서 로빈(권장호 개발자)이 입사했을 때는 진짜 충격이었어요. 저보다 어리고 경력도 짧은데 일을 대하는 태도나 적극성이 저랑 많이 달랐어요. 일하는 시간 외에도 시간 내서 꾸준히 개발 공부나 블로그를 하는 모습을 보면서, 저도 열심히 해야겠다는 생각이 들더라고요.  그전까지는 좀 안주하려는 면이 있었어요. 왜 그러냐면 저는 저보다 나이나 경력이 많은 분들이랑만 일해왔잖아요. 그러다 보니 칭찬도 “나이에 비해 잘한다”는 말을 주로 들었어요. 사실 그게 “아직 잘은 못한다”는 뜻이잖아요. 그걸 모르고 그냥 내가 잘하고 있구나 하면서 안도해왔던 것 같아요.  그런데 아직 어리다는 장점은 시간이 지날수록 약해지잖아요. 이른 나이에 빠르게 일을 시작했다는 저만의 장점을 계속 가지고 있으려면 지금 상황에 만족하는 게 아니라 계속 노력해야 한다는 걸 깨달은 것 같아요. 개발자를 하루 이틀 하다가 때려치울 것도 아니고 남들보다 빨리 실전에 뛰어든 만큼 이론적으로 부족한 것도 많으니 더 공부해야 한다는 거죠.    “일을 일찍 시작했다는 장점을 유지하려면  지금 상황에 만족하지 않고 계속 노력해야 돼요”   그런데 열심히 해보려고 해도 뭘 해야 할지, 어떤 공부를 어떻게 하면 좋을지 막막할 때도 있잖아요. 전 직장이었다면 그랬을 것 같아요. 그런데 개발팀원은 모두 저보다 개발 경력이나 사회 경험도 많고 언제든 조언해줄 마음이 열려있는 분들이라 도움을 받고 있어요. 특히 폴(이건노 CTO)은 주니어 개발자들과 1:1 미팅을 자주 가지면서 도움 되는 조언을 많이 해줘요.  한번은 폴이 제 개발자 커리어에 대한 조언을 해주셨어요. 저는 프론트엔드 개발자라면 프론트엔드만 전문적으로 파면된다고 생각했거든요. 그런데 백엔드 등 다른 개발 분야도 1단계 정도는 공부를 해둬야 지반이 탄탄한 프론트엔드 개발자가 될 수 있다는 조언을 해주셨어요. 그 조언이 지금도 기억에 많이 남아요. 왜냐면 지금 당장 해야 하는 프로젝트 단위가 아니라 제 인생 관점에서 조언을 해주신 거잖아요. 사실 폴은 CTO고 저는 직원이니까 조언도 업무 코치 위주로만 해줄 수도 있는 건데요. 이렇게 저보다 10, 20년 넘는 경력을 가진 분이 제 개발자 인생에 대해 해주는 조언은 어디서도 듣기 힘들잖아요.    그렇죠. 멘토가 중요하다고는 하는데, 20대 초반의 멘토는 보통 책이나 TV같이 멀리서만 접할 수 있는 인물이잖아요. 좋은 멘토는 많지만 나를 위한 조언이 아닐 때는 공허하게 들리기도 하고요.  맞아요. 저도 지금 이 시기에 바로 옆에서 조언해줄 수 있는 분이 있다는 건 정말 좋은 것 같아요. 그런 폴 덕에 개발팀은 시켜서 하기보다 자기 주도적으로 일할 수 있는 환경과 문화가 잘 갖춰진 것 같아요.  매주 진행하는 개발팀 업무 공유 회의 때도 단계나 일정에 대한 틀을 잡아주는 역할에 집중하는 편이세요. 위에서 “이거 해, 저거 해”라고 콕 집어서 마이크로 매니징을 하는 게 아니라, 프로젝트 단위로 자발적으로 구성원이 꾸려져서 진행해 나가는 게 오픈서베이의 업무 문화인 것 같아요.  그런 문화다 보니까 저도 시키는 일만 하는데 그치지 않고 다양한 시각에서 프로젝트를 바라보면서 의견도 많이 낼 수 있는 것 같아요. 구성원들이 제 의견을 경청해주고 수용해주면 ‘내가 프로젝트에 직접적으로 기여하고 있구나’란 생각이 들면 책임감도 더 생기는 것 같아요.    “내가 프로젝트에 기여하고 있다는 생각이 들면 더 책임감을 가지면서 일할 수 있어요”   그런 긍정적인 자극이 실제 업무 능력 향상으로도 이어지는 편인가요?  네. 저는 기술적인 면에서도 많이 성장하고 있다고 생각해요. 유지보수하기 수월한 깔끔한 코드를 짜는 능력도 예전보다 많이 향상됐고, 주어진 시간 내 일을 더 빨리 효율적으로 마칠 수 있는 생산성도 많이 올랐다고 생각해요. 저는 야근 없이 깔끔하게 일을 끝내는 게 일을 잘하는 거라고 생각해서요(웃음).   와! 그럼 레드가 배운 일 잘하는 방법 하나만 알려주세요.  저는 ‘똑똑하게 질문하기’라고 생각해요. 질문사항에 대해 충분히 고민해본 뒤 물어봐야 한다는 걸 알았어요. 사실 주니어 때 가장 많이 하는 고민이 ‘어떻게 해야 좋은 질문을 할 수 있을까’ 잖아요. 회사에서는 모르면 물어보라고 하는데 그냥 물어보면 혼날 때도 있으니까요. 그런데 질문거리에 대해 제가 충분히 소화를 못 하면 어디에서 어려움을 겪고 있고 그래서 어떤 도움이 필요한지 질문을 받은 분도 몰라요. 질문이란 건 제 업무를 위해 다른 분의 업무 시간을 빌리는 건데, 정확히 질문하지 못하면 질문한 사람이나 받은 사람의 시간을 그만큼 허비하는 거니까요.  이걸 알고 난 뒤 충분히 고민하고 물어보기 시작했더니 신기하게도 질문을 받은 분의 답변도 달라졌어요. 제가 테리(이한별 개발자)에게 질문을 많이 하는 편인데, “이렇게 해라, 저렇게 해라”는 단편적인 답변이 아니라 “이건 이래서 이렇고, 저건 저래서 저렇다. 그래서 이럴 땐 이걸 써야 하고, 저럴 땐 저걸 써야 한다”는 맥락적인 답변을 해줘요.  테리가 좋은 분이라 답변을 잘 해주시는 것도 있지만 제가 질문거리에 대해 충분히 고민해서 알고 있으니까 구체적으로 대답해줄 수 있는 거라고 생각해요. 이런 좋은 답변으로 과정을 충분히 알면 질문을 반복하거나, 다른 분의 질문에 불필요한 시간 낭비를 하지 않고 답할 수 있게 되는 것 같아요. 나중에 비슷한 상황이 오면 제가 스스로 문제를 해결할 수 있게 되고요.   주니어에게 꼭 필요한 팁이네요! 고맙습니다. 최근에는 방송통신대학교에 진학했다고 들었어요.  맞아요(웃음). 사실 방통대 진학도 로빈의 영향이 컸어요. 안 그래도 최근에 개발 이론 공부를 따로 해보자고 생각하던 차였어요. 그런데 로빈이 방통대 진학을 하면서 같이 해보자고 해서 이참에 도전했죠. 마음만 먹고 있다가 로빈 덕에 실행할 수 있었던 거에요. 요즘은 일을 마치면 방통대 강의를 듣거나 과제를 하는 데 시간을 보내고 있어요.     “이론 공부는 마음만 먹고 있다가 로빈 덕에 실행할 수 있었어요” (레드 옆에 노란옷을 입고 앉아 있는 분이 로빈입니다)   와.. 그럼 일과가 어떻게 되는 거예요?  오픈서베이 병특은 출퇴근 시간이 기본 10시 출근-7시 퇴근인데, 경우에 따라 신청해서 9시-6시로 변경할 수 있어요. 저는 방통대 다니면서부터 9시로 출근 시간을 조정했어요. 출근이 늦으면 그만큼 퇴근도 늦어지니 저녁 시간을 충분히 활용하지 못하겠더라고요.  하루일과는 9시까지 출근해서 우다다 일하고 점심 먹고 일하다가 6시에 칼같이 퇴근해요. 집에 가서는 씻고 밥 먹고 강의를 듣거나 과제를 하죠. 최근에는 저녁 필라테스를 시작해서 평일 저녁 중 이틀은 필라테스를 하러 가요. 주말에 좀 쉬고요(웃음).   조바심이 든다고 다 열심히 할 수 있는 건 아닌데, 남다른 원동력의 배경이 궁금하네요.  저도 진짜 빡센 것 같고 가끔 힘도 들어요. 그런데 다른 회사에서 병특 중인 주변분들 보면 운영보수 위주의 반복적인 업무만 하거나, 병특이라 쉽게 이직할 수 없으니 업무를 과다하게 몰아주는 경우도 보곤 해요.  제가 주어진 업무 시간에만 집중하고 퇴근 후 시간을 자기 계발을 위해 쓸 수 있다는 건 쉽게 얻기 힘든 기회일 수도 있는 거죠. 성장을 위한 중요한 시기에 주어진 기회라고 생각하면 열심히 할 수 있게 되는 것 같아요. 저보다 더 열심히 하는 다른 구성원을 보면서 자극을 받는 것도 물론 있고요.   산업기능·전문연구요원으로  오픈서베이에 지원하고 싶다면? (클릭)   자기개발에 매진하면 회사 생활에 소홀해질 것도 같은데.  음. 회사에서 성취가 없다는 생각이 들면 그럴 수 있겠네요. 그런데 오픈서베이는 반기마다 전사 회의를 통해 하이(황희영 대표이사)가 회사 성장에 대해 공유해주잖아요. 이 시간은 단순히 오픈서베이 매출 성장 공유가 아니라 제 기여가 회사에 어떤 도움이 됐는지, 이를 바탕으로 회사가 얼마나 성장하고 있는지를 점검하는 과정이라고 생각해요.  개인적으로는 투자 받은 돈 까먹는 스타트업이 아니라 우리 서비스와 구성원의 노력으로 흑자를 기록하고 매번 매출 성장을 하고 있다는 점도 저한테는 큰 보람이고 성취거든요. 실질적인 매출이 있고, 고객사가 계속 늘고, 매출 성장도 계속 일어난다는 이야기를 들으면 진짜 회사다운 회사라는 생각이 들고 성취감이 느껴져요.   6월에 강남역 1분 컷 초역세권 사무실로 이사도 가고! (웃음) 그것도 좋은데 사실 저는 하와이 간다고 했을 때 진짜 신났어요(웃음).  사실 전사 하와이 워크샵은 18년 목표 공약이라서 가는 거잖아요. 회사가 진짜 할 수 있는 목표를 잡아서 노력하고 목표 달성을 했을 때 약속을 지키는 모습을 보면서 되게 멋지다는 생각을 했어요. 좋은 회사와 좋은 어른의 모습은 이런 건가 싶고, 이런 모습을 보면서 저도 더 성장해야겠다고 생각하는 것 같아요.      “레드와 함께 일하고 싶으시다면 지금 바로 오픈서베이 입사 지원을 해보세요”
조회수 2050

외부 서비스 이용을 장려해서 개발력을 아끼자.

2017년 목표 중 하나인 Product Management에 관한 weekly 포스팅의 네번째 포스팅입니다. 원래는 weekly 포스팅이었는데..어느덧 biweekly 포스팅이 되고 있습니다. 이번에는 제가 Product Manager로서 “팀 내부 직접 개발 vs 외부 서비스 이용”에 대해서 어떻게 생각하는지에 대해서 정리할까 합니다. 이번에도 confidential한 내용은 생략했습니다.이거 한 달이면 만들어요.제품 개발을 하다보면 Core feature는 아니지만 더 나은 사용자 경험을 위해 필요한 기능을 추가해야 하는 경우가 있습니다. 그리고 이 feature가 개발하기에 쉽지 않다고 예상되는 경우가 있습니다. 이런 상황이 오면 PM, 제품 담당자(혹은 기획자, 대표)은 내부에서 개발할지 아니면 외주를 줄 지, 아니면 외부 서비스를 이용할 지 등을 고민합니다. 그리고 판단을 돕기 위해 기획자/개발자가 모여서 이런 대화를 나눕니다.이거 다 만드는데 얼마나 걸릴 것 같아요?이거 한 달이면 만들어요.그렇습니다. 저 대화가 바로 나중에 개발자가 “내가 이걸 왜 하고 있죠?”라고 얘기하는 그 순간의 시초입니다.하지만 기간은 두 배가 걸린다.하지만 직접 개발에 들어가면 기간(UX, UI디자인 포함해서)은 점점 늘어집니다. 십중팔구 안 됩니다. 되는게 더 이상한 법이에요.헛된 꿈을 꾸었다기간이 두 배가 되는 이유는 딱 하나입니다.  우리에겐 그 분야의 전문성이 없기 때문입니다. 물론 그런 일을 한 경험이 있는 사람들은 좀 더 낫습니다. 하지만 이 사람이 파편적인 경험(혹은 기억)만 가진 경우에는 똑같습니다. 별 차이가 안 나요.-_-;일단 제품의 개발 범위 결정이 안 됩니다. 이게 가장 크리티컬한 이유입니다. 처음에는 앞단에 보이는 것만 생각하고 시작하면서 역기획으로 풀어냅니다. 하지만 기획 단계에서 고려해야 할 요소들은 점점 추가되고 이 중에서 뭘 버리고, 뭘 해야 하는지 정확한 판단이 안 됩니다. 그럴 수 있는 데이터도 적고요.  거기에 디테일하게 개발하는 과정에서 고려해야 할 요소들이 빠지는 경우도 비일비재 합니다. 추가로 각종 정책 결정 이슈도 존재합니다. 이런저런 일들이 계속 추가되고, 해보지 않은 일을 하면서 업무 효율도 떨어집니다. 그러면서 기간은 계속 늘어납니다.결국 사람은 지치고, 일은 계속 늘고, 시간을 쓰게 됩니다. 그리고 그 과정에서 진짜로 에너지를 써야 할 일에 집중을 못 하게 됩니다.그냥 외부 서비스 쓰자!푸른밤의 PM으로서 저 스스로 가지고 있는 원칙이 있습니다.(사실 이건 예전에 프라이베리 때도 지키려고 했던 노력입니다.)기회를 놓치지 않는다.팀의 시간을 헛되이 쓰지 않는다.사람들의 에너지가 낭비되게 하지 않는다.좋은 역량을 가진 사람들은 제품의 core feature에만 집중한다.기회, 시간, 사람, 돈 중에서 가장 가치 없는 것은 돈이다.위 5가지 원칙을 준수하고자 하면, 대부분의 경우 그냥 외부 서비스를 이용하게 됩니다. 예를 들어서 서버 쪽에서 약간 낭비되는 코드가 있더라도 어떤 순간에는 그냥 돈을 더 써서 서버를 늘리는 것을 선택합니다. 메일 서버를 직접 구축해서 각종 마케팅용 메일을 직접 하는 것도 좋지만 그냥 메일침프를 씁니다. 요근래 저와 대표가 함께 부산에 미팅을 다녀왔는데..이것도 비슷한 맥락입니다. 제품 내에 꽤 중요하지만 서비스의 Major급 feature라고 하긴 좀 애매한 기능을 붙여야 하는 상황이었습니다. 개발팀에서는 1개월 정도면 될 것 같다고 했지만 그것보다는 전문적으로 이 일만 하는 곳의 제품을 이용하는 것이 좋다고 판단해서 부산에서 관련 사업을 하는 팀을 찾아갔습니다.“어설프게 우리가 하는 것보다, 인생을 건 사람들의 제품을 쓰는 것이 훨씬 좋다.”는 생각을 가지고 있습니다. 특히 제가 관리하는 제품들도 이런 생각을 가진 사람들이 돈을 쓰기 때문에 운영될 수 있는 제품이라서 다른 사람들보다 거부감이 낮을 수도 있습니다.외부 서비스 선택의 기준추가로 외부 서비스를 선택할 때는 이런 기준을 가지고 판단합니다.우리가 원하는 것이 어느 수준 정도로 충족되는가: 이게 제일 중요합니다. 원하는 것이 안 채워지는데도 돈을 쓸 필요는 없습니다.ㅠ어느 정도 커스텀이 가능하고, API가 제공 범위는 어떻게 되는가: 기존 시스템과 붙이기 얼마나 편하고, 우리 개발팀이 에너지를 어느 정도로 써야 하는지를 판단하기 위해 필요합니다. 덕분에 요즘은 API 문서 읽는 것이 일입니다.-_-;;(마케터, 운영팀 등이 쓰는 경우)개발자/디자이너가 꼭 붙지 않아도 사용할 수 있는가: 전 푸른밤의 모든 사람들이 코딩을 기초적인 수준으로는 했으면 합니다만 (진짜 잘하면 SQL까지도.) 그렇지 못 한 경우가 더 많고 그 과정에 역시 에너지/기회/시간 낭비가 좀 있다고도 생각합니다. 그래서 위 조건도 꽤 중요하게 봅니다.우리가 지금 쓰고 있는 다른 외부 서비스들과 연동이 어느 정도 되는가? 직접 연동이 안 되더라도 다른 방식으로 연동할 수 있는가: 가장 중요합니다. 세상 제일 중요합니다. 저희 같이 외부 서비스 연동을 하나씩 하나씩 하다보면 어느 순간부터 매월 SaaS 툴에만 $1000 넘게 쓰게 됩니다.(정말이에요.) 일단 가장 중요한 데이터 분석 툴과 연동되는지를 봅니다. 그리고 각 부분에서 core한 툴과 연결되는지 봅니다. 예를 들어서 마케팅 오토메이션 단계에서는 유입 관련 데이터 분석 툴과 연결되는 것이 핵심입니다. 제품 관련해서 외부 서비스 쓸 때도 메인 분석툴인 GA와 어떻게 붙는지가 핵심입니다.유기적인 연결이런 복잡한 기준을 잡으면서 외부 서비스 선택을 합니다.우리가 새로 만들자.하지만 이런 힘든 과정 거쳐서 외부 서비스 선택해서 잘 사용하다가 다시 직접 개발하게 될 때도 있습니다. 커스텀의 한계가 오거나, 외부 서비스 회사가 망하거나(ㅠㅠ), 서비스의 오픈 API 범위나 정책이 바뀌거나, 의외로 이 feature의 중요도가 크거나 하면 이런 의사결정을 할 수 있지 않을까 싶습니다. 하지만 아직 제가 이런 경험을 한 적은 없어서..향후에 이런 일이 발생하면 꼭 공유하겠습니다.정리하며스타트업에서 가장 부족한 것이 뭐냐는 질문을 하면 대체로 돈과 사람이라고 답할 것 같은데요. 여기에 기회, 시간이라는 것도 변수로 추가하길 권합니다. 그러면 어떤 경우에도 내 사업의 core가 되는 일들, 내 사업의 core랑 직결되는 제품 관련 과업들, 디자인/개발 관련 과업들만 생각하게 되고 여기에만 집중하게 됩니다.물론 돈이 부족한 것도 알고 있습니다만..정말 인생을 걸고 하는 사업에서 가장 아쉬운 것은 기회와 시간이라고 생각해서 외부 서비스 주구장창 이용하는 PM 안창영이었습니다.푸른밤 안창영#푸른밤 #알밤 #개발 #운영 #개발자 #PM #업무프로세스 #인사이트 #일지 #경험공유
조회수 5538

Next.js 튜토리얼 1편: 시작하기

* 이 글은 Next.js의 공식 튜토리얼을 번역한 글입니다.** 오역 및 오탈자가 있을 수 있습니다. 발견하시면 제보해주세요!목차1편: 시작하기  - 현재 글2편: 페이지 이동3편: 공유 컴포넌트4편: 동적 페이지5편: 라우트 마스킹6편: 서버 사이드7편: 데이터 가져오기8편: 컴포넌트 스타일링9편: 배포하기개요요즘은 싱글 페이지 JavaScript 애플리케이션을 구현하는게 꽤 어려운 작업이라는 것을 대부분 알고 있습니다. 다행히도 간단하고 빠르게 애플리케이션들을 구현할 수 있도록 도와주는 몇 가지 프로젝트들이 있습니다.Create React App이 아주 좋은 예시입니다.그렇지만 여전히 적당한 애플리케이션을 구현하기까지의 러닝 커브는 높습니다. 클라이언트 사이드 라우팅과 페이지 레이아웃 등을 배워야하기 때문입니다. 만약 더 빠른 페이지 로드를 하기위해 서버 사이드 렌더링을 수행하고 싶다면 더 어려워집니다.그래서 우리는 간단하지만 자유롭게 설정할 수 있는 무언가가 필요합니다.어떻게 PHP로 웹 애플리케이션을 만드는지 떠올려봅시다. 몇 개의 파일들을 만들고, PHP 코드를 작성한 다음 간단히 배포합니다. 라우팅에 대해 걱정하지 않아도 됩니다. 그리고 이 애플리케이션은 기본적으로 서버에서 렌더링됩니다.이것이 바로 우리가 Next.js에서 수행해주는 일입니다. PHP 대신에 JavaScript와 React를 사용하여 애플리케이션을 구현합니다. Next.js가 제공하는 유용한 기능들은 다음과 같습니다:기본적으로 서버 사이드에서 렌더링을 해줍니다.더 빠르게 페이지를 불러오기 위해 자동으로 코드 스플릿을 해줍니다.페이지 기반의 간단한 클라이언트 사이드 라우팅을 제공합니다.Hot Module Replacement(HMR)을 지원하는 Webpack 기반의 개발 환경을 제공합니다.Express나 다른 Node.js HTTP 서버를 구현할 수 있습니다.사용하고 있는 Babel과 Webpack 설정을 원하는 대로 설정할 수 있습니다.설치하기Next.js는 Windows, Mac, Linux와 같은 환경에서 동작합니다. Next.js 애플리케이션을 빌드하기 위해서는 Node.js가 설치되어 있어야 합니다.그 외에도 코드를 작성하기 위한 텍스트 에디터와 몇 개의 명령어들을 호출하기 위한 터미널 애플리케이션이 필요합니다.Windows 환경이라면 PowerShell을 사용해보세요.Next.js는 모든 셀과 터미널에서 동작하지만 튜토리얼에서는 몇 개의 특정한 UNIX 명령어를 사용합니다.더 쉽게 튜토리얼을 따르기 위해서는 PowerShell 사용을 추천합니다.맨 먼저 다음 명령어를 실행시켜 간단한 프로젝트를 생성하세요:$ mkdir hello-next$ cd hello-next$ npm init -y$ npm install --save react react-dom next$ mkdir pages그런 다음 hello-next 디렉토리에 있는 "package.json" 파일을 열고 다음과 같은 NPM 스크립트를 추가해주세요.이제 모든 준비가 끝났습니다. 개발 서버를 실행시키기 위해 다음 명령어를 실행시키세요:$ npm run dev명령어가 실행되었다면 브라우저에서 http://localhost:3000 페이지를 여세요.스크린에 보이는 출력값은 무엇인가요?- Error No Page Found- 404 - This page could not be found- Hello Next.js- Hello World404 Page다음과 같은 404 페이지가 보일 것입니다.첫 번째 페이지 생성하기첫 번째 페이지를 생성해봅시다.pages/index.js 파일을 생성하고 다음의 내용을 추가해주세요:이제 http://localhost:3000 페이지를 다시 열면 "Hello Next.js" 글자가 있는 페이지가 보일 것입니다.pages/index.js 모듈에서 간단한 React 컴포넌트를 export 했습니다. 여러분도 React 컴포넌트를 작성하고 export 할 수 있습니다.React 컴포넌트가 default export 인지 확인하세요.이번에는 인덱스 페이지에서 문법 에러를 발생시켜봅시다. 다음은 그 예입니다: (간단하게HTML 태그를 삭제하였습니다.)http://localhost:3000 페이지에 로드된 애플리케이션은 어떻게 되었나요?- 아무일도 일어나지 않는다- 페이지를 찾을 수 없다는 에러가 발생한다- 문법 에러가 발생한다- 500 - Internal Error가 발생한다에러 다루기기본적으로 Next.js는 이런 에러들을 추적하고 브라우저에 표시해주므로 에러들을 빨리 발견하고 고칠 수 있습니다.문제를 해결하면 전체 페이지를 다시 로드하지 않고 그 페이지가 즉시 표시됩니다. Next.js에서 기본적으로 지원되는 웹팩의 hot module replacement 기능을 사용하여 이 작업을 수행합니다.You are Awesome첫 번째 Next.js 애플리케이션을 구현하였습니다! 어떠신가요? 마음에 드신다면 더 많이 배워봅시다.마음에 들지 않는다면 우리에게 알려주세요. Github 저장소의 issue나 Slack의 #next 채널에서 이야기 할 수 있습니다.#트레바리 #개발자 #안드로이드 #앱개발 #Next.js #백엔드 #인사이트 #경험공유
조회수 1241

jekyll의 메커니즘을 이해하고 커스터마이징하기

편집자 주-PHP 기반의 서비스를 기준으로 설명했다.-서버의 프로그램은 ‘서버 스크립트’로 표기했다.-HTML/html: 약어로 사용할 경우엔 대문자, 파일명으로 사용할 경우엔 소문자로 표기했다.목차jekyll이 어렵게 느껴지는 이유 jekyll은 모든 화면을 미리 만들어둔다.서버 스크립트 없이 검색 기능을 어떻게 만들까?이미지 캡션 추가이미지 사이즈 대응부록: 글 반영 과정, 도메인 연결 방법, 추가 옵션에 대하여Overview기술 블로그인 브랜디 랩스를 관리하기에 jekyll은 안성맞춤인 도구입니다. 1년 넘게 탈 없이 잘 사용하고 있죠. 물론 커스터마이징을 하려면 고생이 이만저만이 아닙니다. 그 과정은 jekyll을 이용한 Github 블로그 만들기에도 잘 나와있습니다. 도대체, jekyll은 왜 이리도 어려운 걸까요? 브랜디 랩스를 사례로 설명하겠습니다.jekyll이 어렵게 느껴지는 이유일반적인 웹서비스는 정적 리소스와 동적 스크립트의 조합으로 이뤄집니다. 예를 들어 PHP 서비스에서는 정적인 부분을 아파치 웹서버로, 동적인 부분을 PHP 스크립트로 작동합니다.하나의 게시글이 생기면 PHP 스크립트가 데이터베이스에 row 생성을 요청합니다. 게시글 등록 요청을 마치고, 글 목록 화면 요청을 한다면 데이터베이스에서 등록된 글목록을 정리해 HTML 양식으로 응답값을 만들어줄 것입니다.PHP 기반의 블로그 프로그램하지만 jekyll은 컨셉부터 다릅니다. 아주 생소한 메커니즘을 갖고 있습니다. 파일 기반의 데이터를 정적인 리소스로 빌드해서 서비스하죠. 게시글마다 md 파일이나 html 파일을 생성합니다. 글을 작성하고 배포하기 위한 빌드를 진행하면 응답할 html 화면을 만들고, 파일로 저장해 준비합니다. 이 상태에서 유저가 특정 화면을 요청하면 미리 생성한 html 파일을 찾아 꺼내주기만 하면 되죠. 다시 말해, 데이터베이스를 조회하고 HTML 양식으로 응답값을 만드는 과정이 생략되는 것입니다.실제로 Github page가 아파치 서버를 쓰는지는 알 수 없지만 개념 설명을 위해 동일하게 그렸다.jekyll은 모든 화면을 미리 만들어둔다.jekyll은 유저가 요청할 수 있는 모든 화면을 미리 빌드하는 방식을 씁니다. 앞서 다뤘던 브랜디 랩스의 gnav 영역의 회사소개, 채용 화면도 미리 빌드해둬야 합니다. 저자를 소개하는 프로필 페이지도 마찬가지죠. 글이 많아지면서 점점 길어지는 글 목록 화면도 예외는 아닙니다. 글 목록을 보여주는 화면이 많아지만 페이지 수만큼 미리 만들어야 합니다.위의 이미지는 jekyll이 동작하는 메커니즘을 간단히 정리한 것입니다. jekyll을 커스터마이징하려면 완전히 새로운 관점으로 접근해야 합니다. 지금부터는 브랜디 랩스의 검색 기능 구현 과정을 살펴보면서 커스터마이징을 자세히 알아보겠습니다.서버 스크립트 없이 검색 기능을 어떻게 만들까?검색을 하려면 작성된 모든 글의 제목과 내용에 원하는 키워드가 있는지 찾아야 합니다. 하지만 검색어는 변동값이므로 미리 빌드하는 방식으로는 커버할 수 없습니다. 검색어마다 화면을 미리 만들 수 없기 때문입니다.이럴 때는 클라이언트 스크립트는 활용해야 합니다. 서버 스크립트를 쓸 수 없기 때문에 어쩔 수 없는 선택이기도 합니다. 검색에 필요한 정보를 json 파일로 빌드시키고 자바 스크립트를 이용해서 검색하도록 했습니다.먼저 최상위 경로에 search.json을 만듭니다. 파일 시작점에 아래와 같은 패턴이 있다면 빌드 대상으로 인식됩니다.--- --- 이전에 쓴 jekyll 문서를 PDF로 배포하기에서 pdf.html 파일을 만들 때도 비슷한 방법을 사용했습니다.--- --- [ {% for post in site.posts %} { "title" : "{{ post.title | escape }}", "category" : "{{ post.category }}", "tags" : "{{ post.tags | join: ‘, ’ }}", "url" : "{{ site.baseurl }}{{ post.url }}", {% if post.author %}{% for author in site.data.authors %}{% if post.author == author.name %} "author" : "{{author.koname}}", "email" : "{{author.email}}", {% endif %}{% endfor %}{% endif %} "date" : "{{ post.date }}", "content" : "{{ post.content | strip_html | replace: "\", ‘’ | replace: ‘"’, ‘\"’ | replace: ' ‘,’ ' | replace: ' ‘, ’ ' }}" } {% unless forloop.last %},{% endunless %} {% endfor %} ] ▲서머리 데이터를 만드는 json 파일search.json은 모든 페이지의 제목과 내용을 정리해 json으로 만들어야 하기 때문에 site.posts변수를 이용해 만들었습니다. post내용에는 글의 저자, 작성일, 제목, 내용 등 필요한 정보가 있으니 출력하면 됩니다. json을 만드는 것이므로 내용에 “가 들어가면 안되 "으로 치환시켰습니다. 마지막으로 HTML 태그는 검색에 필요하지 않기 때문에 luqid strip_html 함수를 이용해 제거했습니다.http://labs.brandi.co.kr/search.json위의 URL을 클릭하면 브랜디 랩스에서 검색에 사용하는 json을 볼 수 있습니다. 빌드하면 search.json이 만들어지는 것을 확인할 수 있습니다. 이제 json을 로딩하고 해당 키워드를 가진 글을 찾아내기만 하면 됩니다. json 내에 제목과 내용에 입력한 키워드가 있을 때 아래와 같은 UI로 표현했습니다. 기능 구현은 Simple-Jekyll-Search를 이용했습니다. 1)이미지 캡션 추가블로그는 이미지를 많이 사용하고, 상황에 맞게 노출도 해야 합니다. 아래 이미지는 최종적으로 적용한 이미지와 캡션의 결과 화면입니다. {% include figure.html file="/assets/20190415/05.png" alt="05" caption="커스터마이징한 gnav 영역" width="fitcontent" border="true" %} 위와 같이 구성하려고 html과 css를 다음과 같이 구성했습니다. 커스터마이징한 Gnav영역 ▲캡션 html 소스figure { margin: 1em auto; } figcaption { text-align: center; font-weight: bold; color:#999; } ▲캡션에 관련된 css 소스이미지는 가운데 정렬했고, 캡션 텍스트도 옅은 회색으로 가운데 정렬했습니다. 하지만 편집을 담당하는 장근우 대리는 개발자가 아니므로 태그를 입력해달라고 하기엔 무리가 있었습니다. 좀 더 편리한 방식이 없을지 고민하다가 liquid 템플릿의 include 기능을 쓰면 되겠다는 생각이 들었죠. 아래는 브랜디 랩스 원고에 이미지를 넣을 때 쓰는 liquid 문법입니다.{% include figure.html file="/assets/easydebug/5.png" alt="07" caption="커스터마이징한 Gnav영역" %} liquid 템플릿 엔진에서 include할 때 추가 파라미터를 전달할 수 있습니다. file, alt, caption은 파라미터로 전달하고, include되는 파일에서 전달할 내용을 바탕으로 프로그램을 구현할 수 있습니다. {{include.caption}} ▲ /_includes/figure.html이미지 사이즈 대응작은 이미지를 확대하면 이렇게 된다.대부분은 이미지는 화면에 꽉 차지만, 어떤 이미지는 사이즈가 너무 작아 원래의 사이즈로 보여줘야 했습니다.{% include figure.html width="fitcontent" border="true" file="/assets/easydebug/5.png" alt="07" caption="커스터마이징한 Gnav영역" %} ▲사이즈와 외곽 테두리 선에 스펙을 추가했다.추가 전달 인자를 넣고, figure.html 파일에서도 사이즈 대응을 했습니다. {{include.caption}} ▲완성된 /_includes/figure.html 파일figure { margin: 1em auto; } figure.percent100 { width: 100%; } figure.percent90 { width: 90%;} figure.percent80 { width: 80%;} figure.percent70 { width: 70%;} figure.percent60 { width: 60%;} figure.percent50 { width: 50%;} figure.percent40 { width: 40%;} figure.percent30 { width: 30%;} figure.percent20 { width: 20%;} figure.percent15 { width: 15%;} figure.percent10 { width: 10%;} figure.percent5 { width: 5%;} figure.fitcontent { width: fit-content;} figcaption { text-align: center; font-weight: bold; color:#999; } ▲완성된 css이제 원하는 사이즈를 지정해 이미지 상황별 적절한 대응을 할 수 있게 되었습니다.Conclusionjekyll은 브랜디 랩스를 운영하기에 아주 유용한 도구입니다. 기본 템플릿도 훌륭하지만 상황과 편의에 맞게 변경하면 개성 있는 기술 블로그를 만들 수 있을 겁니다. 물론 커스터마이징이 어려울 수 있지만 jekyll의 메커니즘을 이해한다면 금방 적응할 수 있을 겁니다. 이제 블로그를 만들 모든 준비가 끝났습니다. 자, 도전해봅시다!부록1.글 반영 과정jekyll을 이용해서 글을 작성했나요? 이제 Github 저장소에 push하면 글이 반영될 겁니다. push하는 과정을 보면 빌드된 파일을 push하는 게 아니라, 원본에 해당하는 md파일 또는 html 파일을 push하는 걸 알 수 있습니다. push하면 Github page에 바로 반영되지 않고, 몇 분 정도 걸립니다. 이것을 통해 작성한 글이 저장소에 push되면 스케줄러나 트리거에 의해 빌드된다는 걸 유추할 수 있습니다. 아마도 빌드 결과를 위한 저장소가 따로 있고, 빌드된 결과가 저장되는 것이라 예상합니다.2.도메인 연결 방법jekyll 서비스에서는 구매한 도메인을 간편하게 연결할 수 있습니다. 프로젝트의 가장 위쪽에 CNAME 파일을 만들고 push하면 금방 적용됩니다.CNAME 파일3.추가 옵션에 대하여자료를 조사하던 중에 공식 사이트의 빌드 추가 옵션을 찾았지만 0.2초 정도로 큰 차이가 없었습니다. 만약 별도의 옵션이 없다면 빌드 결과는 _site 폴더로 모일 겁니다.공식 사이트 빌드 옵션옵션을 넣어 빌드옵션을 넣지 않고 빌드참고1) GitHub - christian-fei/Simple-Jekyll-Search: A JavaScript library to add search functionality to any Jekyll blog.글천보성 팀장 | R&D 개발2팀[email protected]브랜디, 오직 예쁜 옷만
조회수 1032

Jeykll에서 플러그인 없이 sitemape 생성하기

오늘은 구글에서 블로그를 검색할 수 있도록 설정하는데에서 크게 삽질했다.. 구글 웹마스터에 사이트맵을 등록해야 했는데 그 사이트맵이 자꾸 테스트를 통과못해서 3시간이나 삽질했다.. ㅠㅠ계속 삽질하다가 찾은 이유는.. _config.yml 파일에 url 속성이 없어서 url을 가져오지 못해 생긴 문제였다. ㅠㅠ 정말 허무하고 신나고.. 아무튼 모든 문제를 해결하여 성공적으로 완료했으니 그 방법에 대해 정리하도록 하겠음.참고한 블로그: 스우의 게임서버와 클라이언트! 미친듯이 영어 검색어들로 오류를 찾으며 삽질했었는데 의외로 한글 블로그에서 이 부분에 대해 언급되어 있어 해결할 수 있었다. 감사합니다 ㅠㅠsitemap 생성하기1. sitemap.xml 파일 생성블로그의 root 디렉토리에 sitemap.xml 파일 생성.2. sitemap.xml 파일 작성하단의 코드를 복사하여 만들어준 sitemap.xml 파일에 붙여넣기.            3. url 설정추가_config.yml 파일에 url 설정이 없는 경우 url 설정을 추가하여 sitemap.xml에서 site.url 변수값을 사용할 수 있도록 해줌. (이 부분 때문에 무한 삽질 ㅠㅠ)4. 구글 웹마스터 툴에서 테스트 혹은 제출구글 웹마스터 툴에서 테스트 혹은 제출을 통해 만들어준 sitemap이 제대로 동작하는지 확인.여태 GA나 기타 여러가지를 설정하느라 공개하지 않았는데 이제서야 공개합니다.제 블로그는 https://heelog.github.io/about/ 입니다!#트레바리 #개발자 #안드로이드 #앱개발 #Jeykll #백엔드 #인사이트 #경험공유
조회수 2327

CloudWatch에 대하여

OverviewAmazon Web Services(AWS)는 많은 고객들이 이용하고 있습니다. AWS를 이용하여 프로젝트를 운영하고 있다면 각종 서비스의 리소스를 모니터링 하는 게 귀찮게 느껴질 수 있습니다. 이번 글에서는 AWS 리소스를 효과적으로 모니터링할 수 있는 Cloudwatch 서비스를 소개하겠습니다.Cloudwatch는 통합 뷰를 확보하는데 필요한 데이터를 제공합니다. 뿐만 아니라 이벤트 및 리소스를 이용해 경보를 생성할 수도 있습니다.1. Events2. Logs3. Custom Metrics(맞춤형 지표) 생성하기4. Alarm 생성5. Dashboards쉬어가기: Query 언어가 지원하는 여섯 가지 명령 유형1. EventsCloudWatch Events는 정기적인 일정에서 트리거(trigger)되는 규칙을 생성할 수 있습니다.1.규칙 생성을 클릭합니다.2.대상을 호출할 일정을 설정합니다.호출 방식에는 이벤트 패턴과 일정 두 가지가 있습니다. 이벤트 패턴은 json 구조로 표현됩니다. AWS 서비스에서 발생하는 패턴과 일치하면 트리거가 동작합니다. 일정은 지정한 시간과 일치하면 트리거가 동작합니다.cron 또는 rate 표현식을 사용해 예약된 모든 이벤트는 UTC+09:00 시간대를 사용합니다. 최초 단위는 1분입니다.아래는 각각의 필드에 대한 일정 cron식 설명입니다.이번 예제에서는 특정 시간에 트리거되는 일정으로 설정하겠습니다.매일 4시에 동작하도록 설정19 + 9(UTC) - 24(하루) = 새벽 4시3.대상 추가를 선택해 호출할 대상을 지정합니다.Lambda 함수 외에 여러 서비스를 선택할 수 있지만 이번 예제에서는 Lambda 함수를 지정하여 구성하겠습니다.4.규칙의 이름과 설명을 등록하고 규칙 생성을 클릭합니다.5.규칙이 생성된 것을 볼 수 있습니다.2. LogsCloudWatch Logs는 운영 중인 애플리케이션 리소스를 기록하고 액세스할 수 있으며, 관련된 로그 데이터를 검색할 수도 있습니다.1.생성된 규칙이 지정된 시간에 동작하면 CloudWatch Logs에 로그 그룹이 생성된 걸 확인할 수 있습니다.2.Lambda 함수에서 실행된 로그 메시지를 확인할 수 있으며 필터링도 가능합니다.3.로그 그룹에 이벤트 만료 시점을 설정해 오래된 데이터는 모두 자동으로 삭제되도록 설정할 수 있습니다.3. Custom Metrics(맞춤형 지표) 생성하기모니터링하고자 하는 통계치를 직접 선정하고, CloudWatch로 보내 관리하는 지표를 생성해보겠습니다.1.Log Groups에 대한 지표를 생성하겠습니다. 해당 Log Groups에 ‘Filters’를 클릭합니다.2.’Add Metric Filter’를 클릭합니다.3.로그 지표에 대한 필터 패턴을 정의합니다.Filter Pattern* “INFO Success 200” → 세 단어를 모두 포함하는 로그 이벤트 메시지와 일치* “INFO - Start - End” → ‘INFO’ 포함된 메시지 중에 ‘Start’, ‘End’ 제외된 필터 로그 이벤트 메시지와 일치4.필터 및 지표 정보를 입력한 후 ‘Create Filter’를 클릭합니다.Metric Details* Metric Namespace → CloudWatch 지표에 대한 대상 네임 스페이스* Metric Name → 모니터링된 로그 정보가 게시되는 CloudWatch 지표의 이름* Metric Value → 일치하는 로그가 발견될 때마다 지표에 게시하는 숫자 값* Default Value → 일치하는 로그가 발견되지 않은 기간 동안 지표 필터에 보고되는 값5.두 가지 케이스의 필터를 생성했습니다.4. Alarm 생성단일 CloudWatch 지표를 감시하거나 CloudWatch 측정치를 기반으로 하는 수학 표현식의 결과를 감시하는 CloudWatch 경보를 생성할 수 있습니다. 지표가 지정된 임계값에 도달하면 자동으로 이메일을 보내는 Alarm을 만들어보겠습니다.1.추가된 지표 필터에 ‘Create Alarm’ 버튼을 클릭해 경보를 추가합니다.2.경보 세부 정보 및 수행할 작업을 정의합니다.경보 평가경보를 생성할 때, CloudWatch가 경보 상태를 변경하는 조건 세 가지에 대한 설정을 지정할 수 있습니다.기간은 경보에 대해 개별 데이터 포인트를 생성하기 위해 지표 또는 표현식을 평가하는 기간입니다. 초로 표시됩니다. 1분을 기간으로 선택하면 1분마다 하나의 데이터 포인트가 생성됩니다.Evaluation Period(평가 기간)는 경보 상태를 결정할 때 평가할 가장 최근의 기간 또는 데이터 포인트의 수입니다.Datapoints to Alarm(경보에 대한 데이터포인트)는 평가 기간에 경보가 ALARM상태에 도달하게 만드는 위반 데이터 포인트의 수입니다. 위반 데이터 포인트가 연속적일 필요는 없습니다. Evaluation Period(평가 기간)와 동일한 마지막 데이터 포인트의 수 이내면 됩니다.3.경보가 발생할 Alarm 상태와 알림 받을 이메일을 등록합니다.경보 상태/OK/ 지표 또는 표현식이 정의된 임계값 내에 있습니다./ALARM/ 지표 또는 표현식이 정의된 임계값을 벗어났습니다./INSUFFICIENT_DATA/ 경보가 방금 시작되었거나, 측정치를 사용할 수 없거나, 또는 측정치를 통해 경보 상태를 결정하는데 사용할 충분한 데이터가 없습니다.4.이메일 수신함에서 ‘AWS 알림 - 구독 확인’이라는 제목의 메일을 클릭합니다. 내용에 포함된 링크를 클릭해 알림을 수신할 것을 확인합니다. (AWS는 확인된 주소로만 알림을 전송할 수 있습니다.)5.이메일 수신함을 확인해 ‘Confirm subscription’을 클릭합니다.6.등록한 이메일이 확인되었습니다.7.AWS에 이메일이 정상적으로 등록되었는지 SNS Subscriptions 메뉴에서 확인합니다.8.Lambda를 실행해 Alarm 상태를 변경해보겠습니다.9.등록한 이메일 주소로 Alarm 메일이 도착했습니다.5. DashboardsCloudWatch를 통해 리소스를 손쉽게 모니터링할 수 있는 맞춤형 통계 기능입니다.1.Metric Filter에서 추가된 Custom Namespaces를 클릭합니다.2.생성된 Metrics를 선택한 후, Graphed metrics Tab을 클릭합니다.3.Metrics에 표시될 그래프를 설정합니다.1)그래프 제목 : testLambda12)그래프 표시 : 숫자3)그래프 라벨 : testMetrics-400, testMetrics-2004)통계 : 합계5)기간 : 1 Day4.수식을 응용하여 여러 형식의 Metrics 표현식을 추가하겠습니다.지표 수식 함수* METRICS() : 요청에 모든 지표를 반환* SUM(METRICS()) : 모든 지표의 합계* AVG(METRICS()) : 모든 지표의 평균* MIN(METRICS()) : 모든 지표의 최소값* MAX(METRICS()) : 모든 지표의 최대값* ABS(METRICS()) : 각 요소의 절대값* RATE(METRICS()) : 각 요소의 초당 변경 비율5.완성된 지표 Source를 복사합니다.{ "metrics": [ [ { "expression": "SUM(METRICS())", "label": "합계", "id": "e1", "stat": "Sum", "period": 86400 } ], [ { "expression": "AVG(METRICS())", "label": "평균", "id": "e2", "stat": "Sum", "period": 86400 } ], [ { "expression": "MIN(METRICS())", "label": "최소값", "id": "e3", "stat": "Sum", "period": 86400 } ], [ { "expression": "MAX(METRICS())", "label": "최대값", "id": "e4", "stat": "Sum", "period": 86400 } ], [ { "expression": "SUM(METRICS())/SUM(m1)", "label": "SUM(METRICS())/SUM(m1)", "id": "e5", "stat": "Sum", "period": 86400 } ], [ { "expression": "SUM(100/[m1, m2])", "label": "SUM(100/[m1, m2])", "id": "e6", "stat": "Sum", "period": 86400 } ], [ "testMetrics", "testMetrics1", { "id": "m1", "stat": "Sum", "period": 86400, "label": "testMetrics-400" } ], [ ".", "testMetrics2", { "id": "m2", "stat": "Sum", "period": 86400, "label": "testMetrics-200" } ] ], "view": "singleValue", "stacked": false, "region": "ap-northeast-1", "title": "testLambda1", "period": 300 } 6.Dashboard name을 입력한 후 ‘Create dashboard’를 클릭합니다.7.’Add widget’을 클릭해 Number 유형을 선택합니다.8.Source Tab에서 복사해 둔 지표 Source를 붙여 넣고, ‘Create widget’을 클릭합니다.9.위젯이 추가되었습니다. 추가된 위젯은 ‘Save dashboard’ 버튼을 클릭해야 최종 저장됩니다.10.이번에는 로그 메시지 결과를 확인할 수 있는 Query result 유형을 추가해보겠습니다. 먼저 Query result 유형을 선택합니다.11.로그 메시지에 조건을 추가해 필터링합니다.잠시 쉬어가기!: Query 언어가 지원하는 여섯 가지 명령 유형fields : 지정한 필드를 검색합니다. 필드 명령 내에서 함수 및 연산을 사용할 수 있습니다. 만약 @ 기호, 마침표(.) 및 영숫자 문자 이외의 문자가 포함된 로그 필드가 쿼리에 명명되어 있으면 해당 필드 이름은 억음 기호로 둘러싸야 합니다.filter : 하나 이상의 조건으로 필터링합니다. filter statusCode like /2\d\d/ → 필드 statusCode의 값이 200~299인 로그 이벤트를 반환합니다.stats : 로그 필드에 대한 지정된 시간 간격의 집계 통계를 계산합니다.sort : 검색된 로그 이벤트를 정렬합니다.limit : 쿼리에서 반환되는 로그 이벤트 수를 제한합니다.parse : 로그 필드에서 데이터를 추출하고 쿼리로 추가 처리할 수 있는 임시 필드가 하나 이상 생성됩니다.12.추가된 위젯은 이름과 사이즈를 조절한 후, ‘Save dashboard’ 버튼을 클릭해 최종 저장합니다.13.생성한 Alarm을 Dashboard에 추가하겠습니다.14.Dashboard가 완성되었습니다!Conclusion지금까지 CloudWatch 서비스를 소개했습니다. 이 서비스를 이용하면 로그와 지표를 쉽게 시각화할 수 있고, 작업을 자동화할 수도 있는 것을 확인했습니다. CloudWatch를 이용해 애플리케이션을 최적화하고, 원활하게 실행해보는 건 어떨까요. 분명 리소스를 효과적으로 다룰 수 있을 겁니다.글곽정섭 과장 | R&D 개발1팀[email protected]브랜디, 오직 예쁜 옷만
조회수 2839

타다 클라이언트 개발기

앞서 종합 모빌리티 플랫폼인 타다의 시스템 설계를 위한 많은 고민과 기술적 결정들에 대해서 서버팀에서 소개한 바 있습니다. 이번 글에서는 타다 서비스를 출시하기까지 타다 모바일 클라이언트를 개발하는 과정에서 내린 클라이언트 팀의 전략적 결정들과, 타다 클라이언트를 개발하는데 사용한 기술들을 공유합니다.시작 전 상황3달 반의 개발 기간: 타다는 VCNC가 SOCAR에 인수되면서 개발하게 된 서비스입니다. 빠르게 시장에 뛰어들어서 선점하는 것이 무엇보다 중요했기에 시간과의 싸움은 필수적이었습니다. 프로젝트는 6월에 시작되었고 1.0 출시는 추석 연휴 직전인 9월 중순으로 결정되었습니다. VCNC에서 오프라인 운영은 처음이었기 때문에 차량을 실제로 운행해보면서 사용성 경험을 테스트할 필요가 있었습니다. 그래서 8월 초에 사내 테스트용 알파 버전을 출시하기로 했습니다.클라이언트 팀 통합: 비트윈 때는 Android/iOS 팀이 나뉘어 있었습니다. 회사 인수 과정에서 발생한 조직 개편으로 인해 타다 클라이언트 개발자는 5명으로 이루어졌습니다. 전부터 다른 OS 개발도 경험하고 싶던 적극적이고 열정적인 5명의 멤버들은 과감하게 팀을 통합해서 Android/iOS을 함께 개발하기로 했습니다.3개의 앱 개발: 타다의 서비스를 위해서는 Android/iOS, 라이더/드라이버 총 4개의 앱을 제작해야 합니다. 하지만 시간과 일정을 고려했을 때 4개의 앱을 다 제작하기는 무리라고 판단을 했습니다. iOS에서는 내비게이션 앱을 사용 중에 드라이버 앱으로 손쉽게 전환하는 기능을 제공할 수 없고 내비게이션 앱으로 경로 안내를 요청하는 것도 제한적이기 때문에 iOS 드라이버 앱은 제작하지 않기로 했습니다.무에서 시작한 프로젝트: 타다는 코드 베이스가 없는 empty repository에서 시작했습니다. 언어도 바뀌었고 레거시 코드와도 엮이고 싶지 않았기 때문에 비트윈에서 어떠한 라이브러리도 가져오지 않고 전부 새로 만들기로 했습니다.클라이언트 팀의 5명의 정예 용사들. by Sam코드 아키텍처 - RIBs프로젝트가 시작되고 기획이 진행되는 동안 3주의 시간을 기반 작업에 쓰기로 했습니다. 가장 먼저 진행한 것은 코드 아키텍처 정하기입니다. 당시에 제가 SAA(Single-Activity Application)에 관심을 가지고 있었는데, 때마침 Google I/O 2018의 세션 중 Modern Android development: Android Jetpack, Kotlin, and more 에서도 비슷한 언급이 나와서 팀에 제안했고, 본격적으로 조사를 해보았습니다. 팀원들이 조사를 진행해보니 Uber, Lyft, Grab 등 굴지의 모빌리티 서비스 회사들이 전부 SAA 기반으로 앱을 개발했다는 것을 알게 되었습니다. 무거운 리소스인 지도를 중심으로 화면이 구성되기에 반복적인 지도 리소스 할당/해제를 피하기 위한 필연적인 선택으로 보입니다. 큰 기업들이 수년간 서비스를 하며 문제를 느끼고 내린 선택인 만큼 저희도 따라가기로 결정했습니다. 비트윈 때 Activity Stack으로 인해 굉장히 고통을 겪은 적이 있는지라 SAA를 원하는 공감대도 있었고요.SAA로 개발을 하기로 정한 이후에는 어떤 프레임워크를 사용해서 개발할지를 고민했습니다. 여러 개의 오픈소스를 비교할 때 Android/iOS 간의 통일된 아키텍처로 개발할 수 있는지를 가장 중점적으로 보았습니다. 대부분의 팀원이 한쪽 OS에만 익숙하기 때문에 초보임에도 빠르게 적응하고 개발하려면 비즈니스 로직을 구현하는 부분이 통일되어 있어야 한다고 생각했습니다. Uber의 RIBs는 저희의 이런 요구를 가장 잘 충족했습니다. 거기에 데이터의 scope와 전달 방식 명확해서 side-effect 없이 개발할 수 있다는 점, 그로 인해 효율적으로 협업이 가능하고 여러명이 개발한 RIB 을 레고 조립하듯 합쳐서 기능을 완성할 수 있다는 점에서 RIBs를 선택하게 되었습니다.RIBs는 아키텍처를 이해하는 것 자체가 굉장히 난해합니다. 오픈소스 상으로 공개가 되지 않은 부분들도 있어서 저희의 입맛에 맞게 변형하는 데 매우 많은 시간을 할애했습니다. RIBs와 관련한 내용은 Nate(김남현)가 Let'Swift 2018에서 발표한 RxRIBs, Multiplatform architecture with Rx 의 영상 및 발표자료를 참조하세요.추후 RIBs를 상세하게 다루는 포스팅을 해보도록 하겠습니다.서버와의 통신 프로토콜새로운 서버 API가 생길 때마다 해당 API의 명세를 문서화하고 전달하는 것은 굉장히 불편한 일입니다. 또한 문서를 작성할 때나 클라이언트에서 모델 클래스를 생성할 때 오타가 발생할 수도 있습니다. 타다에서는 서버 클라이언트 간 API 규약을 Protocol Buffer를 사용해서 단일화된 방법으로 정의하고 자동화하기로 했습니다. 모든 API의 url은 .proto 파일 이름으로 정형화되어 있고 POST body로 Params 객체를 JSON으로 serialization 해서 보내면 Result JSON이 응답으로 옵니다. 서버가 새로운 API를 개발할 때 .proto 파일만 push 하면 클라이언트에서 스크립트를 돌려서 Model 객체를 생성하고 해당 객체를 사용해서 호출만 하면 되는 아주 간단하고 편한 방식입니다.참고로 타다의 서버군에 대한 설명은 타다 시스템 아키텍처에 기술되어 있습니다.기반 작업타다는 빈 repository에서 시작한 깔끔한 프로젝트였기 때문에 Base 코드와 내부 라이브러리들을 전부 새로 개발했습니다.API Controller, gRPC Controller서버와의 통신에 필요한 모듈들을 개발했습니다. 모든 API는 Rx의 Single과 Completable로 wrapping 되어 있습니다.RIBs가장 자주 사용하는 Router 패턴들을 wrapping.Android에서 구현이 공개되어 있지 않은 ScreenStack 구현.SAA이므로 Android에서 Activity가 아닌 화면 단위의 로깅을 구현.Router의 기초적인 화면 Transition을 구현RIB 뼈대 코드용 template 파일 제작Prefs(Android)/Store(iOS)타다에서는 DB를 사용하지 않고 key-value store로만 데이터를 저장합니다. Android SharedPreference와 iOS UserDefaults의 wrapper를 만들었습니다. Object를 serialization 해서 저장하는 기능, Rx 형태의 getter, cache layer, crypto layer 등이 구현되어 있습니다.Design SupportAndroid에서 drawable을 생성하지 않고 layout.xml 상에서 border, corner-radius, masking을 쉽게 설정하기 위해서 제작했습니다.ButterKtAndroid에서 View Binding 처리를 위해 개발했습니다. 비슷한 기능을 하는 Kotter Knife, Kotlin Android Extension이 가지고 있는 lazy binding 문제를 해결하고 싶었고 가능하면 Butter Knife와 달리 apt 없이 동작하는 라이브러리를 만들고 싶었습니다. 이와 관련된 저희의 생각은 여기에 David(김진형)이 상세하게 기록해 두었습니다. 코드도 공개되어 있으니 잘 활용해 보시길 바랍니다.ToolsModel CompilerPBAndK, swift-protobuf를 수정해 .proto 파일을 저희가 원하는 형태의 kotlin data class와 swift codable struct로 변환하는 스크립트를 구현했습니다.Import ResourceUI/UX 팀에서 작업해서 Google Drive File Stream으로 공유하는 리소스를 프로젝트에 sync 하는 스크립트입니다. 타다에서는 기본적으로 벡터 포맷(Android xml, iOS pdf)을 사용하고 Android에서 벡터로 표현이 안되는 이미지들은 png를 사용합니다. 또한 애니메이션을 위한 Lottie json 파일도 사용합니다. 현재는 Android 용으로만 스크립트가 구현되어 있고 리소스를 프로젝트 내의 각각의 res 폴더에 sync 하는 기능과 svg로 전달받은 벡터 파일을 Android xml 형식으로 변환하는 기능을 포함합니다.sync Lokalise타다에서는 Lokalise로 문자열 리소스를 관리합니다. strings.xml, Localizable.strings 파일로 다운받아서 프로젝트에 sync 하는 스크립트 입니다.Code Template & Settings개발 편의를 위한 간단한 Android Studio Code Template과 코드 통일성을 위한 idea settings를 공유합니다.사용된 기술들OS 공통Firebase: Analytics, Crashlytics, Messaging, Storage 등 다양한 용도로 Firebase를 활용하고 있습니다.gRPC, ProtoBuf: 서버에서 실시간 Event를 받기 위해서 사용합니다.RIBs: 타다의 기반 아키텍처 입니다.Lottie: 애니메이션 요소를 표현하기 위해 사용합니다.Semver: 앱의 버전은 Semantic Versioning 규약을 따라 정의합니다. 버전을 파싱하고 관리하기 위해서 Nate(김남현)가 Kotlin 버전과 Swift 버전의 라이브러리를 제작하고 공개했습니다.Braze: CRM(Customer Relationship Management) 툴인 Braze는 유저를 타게팅해서 전면팝업을 띄우거나 푸시 알림을 발송하기 위해 사용합니다.TeamCity, Fastlane, Beta: CI/CD를 위해서 개발 초기에는 Jenkins를 사용했습니다. 출시 대응을 빠르게 하기 위해서 parallel build 및 우선순위 컨트롤을 하고 싶었는데 Jenkins의 Parallel build가 원하는 대로 동작하지 않아서 현재는 TeamCity로 이전했습니다. Beta를 사용해서 모든 브랜치의 빌드를 배포해서 QA 팀에서 테스트할 수 있게 했습니다. 출시용 빌드는 Android의 경우 아직은 수동 업로드를 하고 있고 iOS의 경우 Fastlane으로 배포합니다.git-flow: Git branching model로는 git-flow를 사용합니다. Branch의 종류에 따라서 TeamCity에서의 빌드 우선순위가 결정됩니다.AndroidKotlin: 당연한 선택이겠죠? 타다의 모든 소스 코드는 Fork 해서 수정한 RIBs의 클래스들을 제외하면 전부 Kotlin으로 구현되어 있습니다.AndroidX: 타다 개발을 시작하는 순간에 AndroidX가 공개되었습니다. 기존 Support Library를 사용하게 되면 언젠가는 migration 해야 할 것이기 때문에 알파 버전임에도 불구하고 처음부터 사용하기로 했습니다. ConstraintLayout, PagingLibrary, Material Component, KTX 등 다양한 Component를 사용합니다.Retrofit, OkHttp: 서버와의 HTTP 통신을 위해서 사용합니다.RxJava: 클라이언트 팀은 Rx 없이는 개발할 수 없을 정도로 적극적으로 Rx를 활용합니다.AutoDispose: Rx subscription을 dispose 하기 위해서 사용합니다. 관련해서 도움이 될만한 글을 읽어보시는 것을 추천합니다. Why Not RxLifecycle?RxBinding: View 이벤트를 Observable 형태로 바꿔주는 RxBinding은 굉장히 유용합니다.Moshi: JSON 라이브러리입니다. Kotlin data class와의 호환을 위해서 Gson 대신 선택했습니다.Glide: 이미지 로딩을 위해서 사용합니다.Detekt: Kotlin을 위한 static code analyzer 입니다. Detekt의 extension을 통해 ktlint도 활용하고 있습니다.Dagger: RIBs는 Dependency injection을 기반으로 합니다. RIBs에선 어떠한 DI system이든 사용할 수 있게 Builder가 분리되어 있습니다. RIBs에서는 Dagger로 설명이 되어 있고 저희도 마찬가지로 Dagger를 사용합니다.ThreeTen Backport: Java8의 날짜 및 시간 라이브러리인 JSR-310의 Java SE6 & 7을 위한 backport 라이브러리입니다. 문자열 파싱 및 시간 연산을 위해 사용합니다.iOSSwift: Kotlin과 마찬가지로 당연한 선택입니다. Swift4.2의 CaseIterable Swift5의 Result 등 항상 최신 버전의 Swift를 사용합니다.RxSwift: 역시나 reactive programming은 필수입니다.RxCocoa, RxGesture: iOS에서도 역시 모든 뷰 이벤트는 Rx 형태로 감지합니다.SnapKit: AutoLayout DSL을 제공하므로 코드상에서 편하게 Constraint를 조절할 수 있습니다.Moya/RxSwift, Alamofire: Http 서버와의 통신을 위해 추상화된 네트워크 라이브러리인 Moya를 사용합니다. 역시나 Rx로 wrapping 된 버전을 사용하고 있습니다.Codable: Swift4부터 제공된 프로토콜로 JSON Encoding, Decoding으로 사용중입니다.Hero: RIBs의 Router가 attach/detach 될 때의 Transition을 처리하는데 이용합니다.Kingfisher: 이미지 로딩을 위해서 사용합니다.KeychainAccess: Access Token 같은 중요 정보를 안전하게 저장하기 위해 사용합니다.Swiftlint: SwiftLint는 fastlane action으로 실행해서 code validation을 합니다.출시 후의 회고짧은 시간에 여러 개의 앱을 만들기 위해서는 시간 및 인원을 아주 효율적으로 배분해야 했습니다. 각 OS의 기존 개발자들이 먼저 프로젝트 기반을 닦는 동안 나머지는 스터디를 진행했습니다. 차량 운영 경험을 쌓는 것이 알파 테스트의 목적이었으므로 일정에 맞추기 위해 드라이버 앱도 개발해야 하는 Android로만 알파 버전을 개발했습니다. 대신에 iOS 알파 버전은 서버팀 YB(김영범)가 아주 빠르게 웹앱으로 개발해주었습니다(1.0은 Native입니다.). 알파 버전의 스펙도 호출-하차까지의 시나리오 외의 다른 부가 기능은 전부 제외했습니다.회사 구성원들이 전부 처음 도전하는 분야였기에 기획을 포함해서 모두가 지속적인 변화에 대응해야 했습니다. 특히 사내 테스트를 시작한 직후 실제 운영을 해보며 깨닫고 변경한 기획 및 UX가 상당히 많았습니다. 개발적으로는 익숙하지 않은 아키텍처인 RIBs를 이해하며 개발하는 것이 생각 이상으로 난도가 높았고 개발하는 중간에도 큰 리팩터링을 여러 번 해야 해서 힘들었습니다. 이러한 이유들로 1.0 출시도 시작 전 상황에서 언급한 것보다 2주 정도 미뤄졌습니다.실제 타다 프로젝트 타임라인하지만 저희는 성공적으로 타다를 출시했습니다! 아래는 팀 내에서 출시를 회고하며 나왔던 몇몇 의견입니다.OS 간 아키텍처가 통일되어서 한 명이 같은 기능을 두 OS 전부 개발할 때 굉장히 효율적이다. 비즈니스 로직의 경우 정말로 Swift <-> Kotlin간 언어 번역을 하면 되는 정도.결과적으로 앱 개발 순서를 굉장히 잘 정했다. 한쪽을 먼저 빠르게 개발하고 문제점을 느껴보며 정비해 나가니까 프로젝트 후반부에 빠른 속도로 기능을 개발하는 데 도움이 되었다. 큰 수정을 양쪽 OS에 하지 않아도 됐던 게 좋았다.짧은 기간 개발했음에도 앱 퀄리티가 굉장히 만족스럽다. 매 상황에서 기술적 선택, 인원 배분 등 경험에서 우러나온 아주 적절한 판단들을 했다고 생각한다.각자 독립적으로 개발하던 기능들이 쉽게 합쳐지고 큰 문제없이 잘 동작하는 하나의 앱이 되는 과정이 정말 신기했다. 아키텍처 설계에 쓴 많은 시간이 결코 아깝지 않았다.마치며아직 저희가 하고 싶고 도전해야 하는 과제들은 무궁무진합니다. 그 중 간략히 몇 가지를 소개합니다.테스트 코드 작성: 시간과의 싸움 속에서 테스트 코드 작성을 지금까지 미뤄왔습니다. RIBs의 Interactor 에 구현된 비즈니스 로직은 반드시 테스트 되어야 합니다.OS 간 구조 통일: 같은 화면임에도 OS 간 작업자가 다른 경우 많은 파편화가 일어났습니다. 1순위로 RIB tree 및 Interactor의 비즈니스 로직 통일하는 작업을 진행하고 있습니다. AlertController 같은 공통적인 컴포넌트들도 최대한 포맷을 통일하려는 작업을 지속해서 진행할 예정입니다.iOS DI: RIBs에서 Android에선 Dagger를 활용해서 쉽게 Builder 구현이 가능하지만, iOS에서는 좋은 방법이 없어서 수동으로 DI를 해결하고 있었습니다. 그래서 Uber가 개발 중인 Needle을 적용하려고 관심 있게 보고 있습니다.네트워크 에러 handling 개선: 중첩돼서 뜨는 Alert를 해결하는 것, global 하게 에러를 처리하는 좋은 구조 찾기 등의 이슈가 있습니다.String Resource 관리: 개발하면서 생성하고 아직 Lokalise에 동기화하지 않은 리소스 키를 체크해서 빌드 오류를 발생시키려고 합니다. 또한 iOS에서 "some_key".localize 형태의 extension으로 번역을 코드상에서 불러오는데 key 값 오타가 나면 런타임에서만 오류를 알 수 있습니다. 따라서 String resource를 enum 형태로 관리하려고 합니다.그 외 50여 가지나 되는 팀원들이 하고 싶은 백로그 목록이 여러분을 기다리고 있습니다. 타다가 성공적으로 런칭할 수 있었던 것은 훌륭한 팀원들이 있었기 때문입니다. 앞으로 저희와 함께 좋은 서비스를 만들어 나갈 멋진 분들의 많은 관심 바랍니다.
조회수 4201

크몽 검색 기능 개선기

안녕하세요? 크몽의 백엔드 개발자로 활동하고 있는 에이든입니다. :)오늘은 크몽에 입사하고 한 달 동안 UX팀에서 진행한 검색 기능 개선에 대한 이야기를 해보려고 합니다.배경크몽에는 재능을 판매하는 프리랜서의 서비스 정보가 많이 저장되어있습니다. 판매하는 서비스 정보가 많을수록 검색 기능이 잘 되어있다면 사용자는 원하는 서비스를 빨리 찾을 수 있고, 프리랜서는 다양한 서비스를 의뢰인에게 판매할 수 있습니다.크몽에서는 사용자에게 정확한 검색으로 다양한 서비스를 제공하기 위해 노력하고 있습니다. 이번 글에서는 크몽 UX팀에서 보다 나은 검색 기능을 위해 어떠한 노력을 했는지 공유하고자 합니다.기존의 검색 기능기존의 검색 기능은 기본적인 키워드 검색 외에 별다른 기능을 제공하지 않았습니다. 그리고 스핑크스 검색엔진으로 구성되었습니다. 스핑크스는 전문 텍스트 검색 기능을 제공하며 데이터베이스와 잘 통합될 뿐만 아니라 스크립트 언어에 쉽게 접근할 수 있도록 설계되었습니다. 스핑크스의 동작 구조는 다음과 같습니다.스핑크스의 동작 구조Searchd는 클라이언트로부터 요청을 받고 스핑크스 인덱스에 대해 검색을 실행하는 역할을 합니다. 그리고 스핑크스 인덱서는 스핑크스 인덱스로 데이터를 가져오는 역할을 합니다.크몽은 이를 통해 사용자에게 검색 기능을 제공했습니다. 하지만 기존의 검색 기능은 불편한 점이 있었습니다.기존의 검색 기능의 불편한 점기존의 검색 기능은 의뢰인이 어떤 서비스를 필요로 하는지 본인이 정확하게 정의할 수 있어야 했습니다. 그게 아니라면 여러 키워드를 검색해보거나 원하는 서비스를 찾기 위해 해당 카테고리에서 서비스 전체를 둘러봐야 했습니다. 또한 많은 유료광고로 인해 사용자는 일반 서비스를 찾기가 힘든 문제가 있었습니다.기능상의 불편한 점뿐만 아니라 구현상에도 불편한 점이 있었습니다. 스핑크스에서 한글 검색을 구현하기 위해서는 복잡한 설정을 거쳐야 했으며 ngram analyzer를 통해서만 한글 형태소 분석이 가능했습니다. ngram analyzer는 음절 단위의 한국어 형태소 분석을 하므로 인덱스의 양이 많아질 뿐만 아니라 불필요한 정보까지 검색에 노출이 됩니다. 불필요한 정보가 노출되면서 종료율은 높아지고 서비스 상세페이지의 전환율이 낮아졌습니다. 또한 스핑크스는 데이터의 저장이 되지 않기 때문에 분석을 위해서는 별도의 과정이 필요했습니다.이에 크몽 개발팀은 사용자를 위한 검색 기능 보강뿐만 아니라 검색 엔진 변경이라는 결론을 내립니다.새로운 검색 기능새로운 검색 기능을 개발하기에 앞서 요구사항을 파악하고 새로운 검색 엔진에 대한 기술 탐색을 선행했습니다.프로젝트 진행 목적 및 요구사항정확한 검색 결과 제공광고 상품 제거를 통한 서비스 상세페이지로의 전환율 증대서비스 검색에 최적화된 검색 플로우무엇을 검색해야 할지 모르는 사용자를 위한 검색 가이드검색 엔진 및 한글 형태소 분석기 변경을 통해 사용자에게 정확한 검색 결과를 제공하는 게 우선순위였습니다. 그리고 광고 상품을 제거하고 사용자가 다양한 서비스를 찾을 수 있게 도와주는 기능을(자동완성검색, 연관검색어, 인기검색어) 추가했습니다. 그뿐만 아니라 서비스 검색에 최적화된 검색 플로우를 위해 UI 개선도 진행했습니다.새로운 검색 엔진새로운 검색엔진을 찾던 중 은전한닢 한글 형태소 분석기를 공식으로 지원하는 엘라스틱서치를 찾았습니다.17개 검색 엔진 순위 (출처: DB-ENGINES)17개 검색 엔진의 순위를 살펴보면 아파치 루씬 기반의 엘라스틱서치가 다른 검색 엔진보다 100점 넘게 차이 나는 압도적인 점수를 기록하고 있습니다. 위의 점수는 구글이나 빙에서 언급 횟수, 구글 트렌드, 기술적 논의 횟수, 채용 공고, 소셜 네트워크에서 언급 횟수 등으로 측정한 점수입니다. 점수 산정 방법이 객관적이지 못하지만 엘라스틱서치가 핫하다는 것에는 이견이 없었습니다. 이에 본격적으로 엘라스틱서치에 대해서 기술 탐색을 시작했으며 스핑크스와 비교도 해봤습니다.엘라스틱서치엘라스틱서치는 확장성이 뛰어난 RESTful 검색 및 분석 엔진입니다. 대용량 데이터를 빠르고 실시간으로 저장, 검색 및 분석할 수 있습니다. 기술 탐색 결과 엘라스틱서치에 저장한 데이터를 키바나를 통해서 분석하고 시각화할 수 있다는 점이 매력적이었고, 공식으로 한글 형태소 분석기를 지원하기 때문에 검색 정확도를 높일 수 있다고 생각했습니다. 한글 형태소 분석기를 이용한 엘라스틱서치의 분석 과정은 다음과 같습니다.한글 형태소 분석기를 이용한 엘라스틱서치의 분석 과정필드의 title에 블로그 검색에 엘라스틱서치를 적용해보려고 합니다. 라는 문장이 있다면 지정한 analyzer를 통해서 분석을 진행합니다. 먼저 문자 필터를 거치고 은전한닢으로 한글 형태소 분석을 수행합니다. 형태소 분석이 완료되면 [블로그, 검색, 엘라스틱, 서치, 적용, 보, 하]로 나누어집니다. 그리고 토큰 필터를 통해 [블로그, 검색, 엘라스틱, 일래스틱, elasticsearch, es, 서치, 적용, 보, 하]로 term이 만들어집니다. 이 term은 elasticsearch index에 문서 id와 함께 저장됩니다.다음은 엘라스틱서치와 스핑크스를 비교해봤습니다.엘라스틱서치 vs 스핑크스엘라스틱서치 vs 스핑크스엘라스틱서치와 스핑크스를 비교해보면 스핑크스도 충분히 좋은 검색엔진이지만 한글형태소 분석기와 키바나의 시각화, 데이터 분석 같은 장점을 활용하기 위해 엘라스틱서치를 도입하기로 했습니다.도입을 결정하고 엘라스틱서치를 구축하는 방법을 알아봤습니다.  1. 엘라스틱 클라우드를 사용하는 방법  2. AWS Elasticsearch Service를 이용해서 구축하는 방법3. EC2 인스턴스에 오픈소스 엘라스틱서치를 직접 설치해서 구축하는 방법   엘라스틱서치를 구축하는 방법에는 보통 3가지 방법이 있고 아래의 특징을 가지고 있습니다.1번은 엘라스틱에서 관리 및 교육, 컨설팅을 지원해줍니다. 그리고 한글 형태소 분석기 은전한닢을 지원합니다. 최신 버전의 엘라스틱 스택을 바로 사용할 수 있으며 모니터링 기능도 지원합니다. 라이선스 별 지원은 링크를 통해서 확인할 수 있습니다.2번은 AWS에서 제공하는 Elasticsearch Service이며, 관리형 서비스입니다. 같은 VPC에 묶여있는 인스턴스를 통해서만 접근할 수 있게 되어있으며 외부에서는 접근할 수 없습니다.(퍼블릭 액세스도 있으나 AWS에서 권장하지 않습니다.) 키바나를 사용하기 위해서는 같은 VPC의 인스턴스 웹 서버 프록시나 AWS 코그니토로 접근해야 합니다. 한글 형태소 분석기 은전한닢을 지원하지만 다른 플러그인은 지원하지 않는 경우가 많이 있습니다. AWS Elasticsearch Service에서 지원하는 플러그인 리스트는 여기에서 확인할 수 있습니다.3번은 EC2 인스턴스에 오픈소스 엘라스틱서치를 설치해서 사용하는 방법입니다. 직접 서버를 구축하는 방법이기 때문에 사용자가 어떻게 사용하느냐에 따라 달라집니다.크몽 개발팀은 가격, 관리적 측면을 고려한 결과 2번 AWS Elasticsearch Service로 구축을 진행했습니다.구현구현은 엘라스틱에서 라라벨 프레임워크에서 사용할 수 있는 엘라스틱서치 관련 라이브러리를 정리해둔 링크를 참고했습니다. 3개의 라이브러리 중 스타가 제일 많은 Plastic 라이브러리를 사용해서 구현을 시도한 적이 있었는데 몇 가지 장점이 있었지만 엘라스틱서치 5까지만 지원을 하므로 field type에 text, keyword가 존재하지 않아 매핑하는데 문제가 있었습니다. 그리고 아직 지원하지 않는 쿼리도 존재하기 때문에 결국에는 PHP 공식 엘라스틱서치 클라이언트 라이브러리인 Elasticsearch-PHP를 사용해야 되는 상황도 발생했습니다. 위에서 말한 점 때문에 Plastic 라이브러리를 걷어내고 Elasticsearch-PHP만 이용해서 개발을 진행했습니다. 엘라스틱에서 제공하는 Elasticsearch-PHP 가이드도 잘 정리되어있습니다. 더욱 자세한 구축, 구현 방법을 알고 싶으신 분들은 아래의 글에서 확인하실 수 있습니다.라라벨 프레임워크 - 엘라스틱서치 사용 경험기 : 초기 작업 수행라라벨 프레임워크 - 엘라스틱서치 사용 경험기 : 문서 관리 작업 수행결과검색 기능 개선 결과는 아래와 같습니다,1.자동완성검색자동완성검색 기능2. 연관검색어 + 검색 결과 광고 제거연관검색어 및 검색결과 광고 제거3. 키워드와 관련된 카테고리 추천키워드와 관련된 카테고리 추천4. 검색 결과가 없는 키워드에는 인기검색어 추천검색 결과가 없는 키워드에는 인기검색어 추천무엇을 검색해야 할지 모르는 사용자를 위한 검색 가이드를 만들기 위해 노력했으며, 기능 추가로 사용자의 검색 만족도와 정확도를 높이려고 노력했습니다.또한 엘라스틱서치와 한글 형태소 분석기 은전한닢을 이용해 검색 기능 개선을 통한 결과 평균 체류 시간은 20초 정도 증가했으며 종료율은 최대 22.4%, 평균 1% 정도 떨어졌습니다. 또한 서비스 상세페이지 전환율은 최대 78.3%, 평균 3% 이상 증가했습니다. 서비스 상세페이지 전환율의 상승은 사용자의 검색 만족과 검색 정확도가 상승했다고 볼 수 있습니다.정리이번 글에서는 엘라스틱서치와 한글 형태소 분석기 은전한닢을 이용해 검색 기능을 개선한 이야기를 정리해봤습니다. 검색 기능 개선 이후 서비스 상세페이지 전환율이 조금씩 상승 중입니다. 릴리즈한지 두 달 정도밖에 되지 않아 조금 더 지켜봐야 하겠지만 전환율이 조금씩 상승하고 있다는 건 좋은 신호인 거 같습니다. 다만 짧은 글을 통해서 경험을 전달하려고 하니 많은 내용을 담지 못한 것 같아 아쉽습니다. 다음에는 더욱더 깊이 있는 글을 전달할 수 있는 에이든이 되겠습니다. 감사합니다.#크몽 #개발팀 #개발자 #개발문화 #경험공유 #인사이트
조회수 1631

SQS + Lambda

Overview안녕하세요. 저는 브랜디 R&D 본부 개발1팀의 기둥을 담당하는 이상근입니다. 오늘은 SQS(Simple Queue Service)와 Lambda를 간단한 예제와 함께 정리해보려고 합니다. 각 서비스에 대한 설명은 이미 매뉴얼로 쉽게 정리되어 있으므로, 이번 글에서는 서비스 간 구성을 집중적으로 살펴보겠습니다.1)SQS와 Lambda에 대하여SQS(Simple Queue Service)는 마이크로 서비스와 분산 시스템, 그리고 서버리스 애플리케이션을 쉽게 분리하고 확장할 수 있는 ‘완전관리형 메시지 대기열 서비스’입니다. 그리고 Lambda는 ‘이벤트 처리 방식의 서버리스 컴퓨팅 서비스’입니다. 아래 그림은 SQS와 Lambda Function을 이용해 메시지를 등록-조회-처리하는데 필요한 구성요소를 정리한 것입니다. SQS, Lambda ArchitectureProducer - 처리할 작업 메시지를 SQS에 등록Trigger - 큐(Queue) 대기열에 있는 메시지들을 조회하기 위해 CloueWatch의 스케줄 이벤트를 이용하여 매 분마다 Lambda Consumer 실행Consumer - Lambda Consumer는 큐 대기열에 있는 메시지 목록을 조회하여 각 메시지를 Lambda Worker에서 처리할 수 있도록 실행Worker - Lambda Worker는 메시지를 받아 작업을 처리하고 해당 메시지를 삭제큐 생성하기이번에는 큐 생성에 대해 살펴보겠습니다. ‘Create New Queue’를 클릭했을 때 지역(Region)에 따라 각각 다른 화면이 노출됩니다. Create New Queue Button타입 선택 화면항목 입력 화면두 번째 이미지와 같이 SQS에서는 Standard, FIFO 두 가지 타입을 제공하고 있습니다. 표준 대기열은 순서에 맞지 않게 메시지가 전송될 수 있습니다. 만약 순서를 반드시 유지해야 한다면 FIFO 대기열을 사용하거나, 순서 정보를 추가하고 사용해야 합니다. 하지만 FIFO 대기열의 경우 현재 미국 동부(버지니아 북부), 미국 동부(오하이오), 미국 서부(오레곤) 및 EU(아일랜드) 지역(Region)이서만 제공되고 있기 때문에 다른 곳에서는 사용할 수 없습니다. 2) 3) 1.Create New Queue ‘Create New Queue’에는 여러 항목이 있습니다. 우선 아래를 참조하여 각 항목에 적절한 내용을 기재합니다. Default Visibility Timeout : 대기열에서 조회한 메시지가 중복 조회되지 않기 위한 시간Message Retention Period : 메시지 보관 기간Maximum Message Size : 메시지 최대 사이즈Delivery Delay : 신규 메시지 전달 지연 시간Receive Message Wait Time : 조회된 메시지가 없을 경우, 사용 가능한 메시지를 기다리는 long polling 시간 설정Dead Letter Queue Settings : 정상적으로 처리되지 못한 메시지를 보관하기 위하여 메시지 수신 최대 수를 지정, 지정한 수신을 초과할 경우 지정한 큐에 메시지 저장2.큐 등록 확인 기본 값으로 설정한 큐 등록을 확인합니다. Queue List3.SQS 메시지 등록 import boto3, json sqs_client = boto3.client(     service_name='sqs',     region_name='xxxxxx' ) SQS 메시지 등록  response = sqs_client.send_message(     QueueUrl='https://sqs.xxxxxx.amazonaws.com/xxxxxx/sqs-test-1',     MessageBody='메시지 내용' )   print(json.dumps(response))   {"MD5OfMessageBody": "xxxxxxx", "MessageId": "xxxxx-xxxx-xxxxxx", "ResponseMetadata": {"RequestId": "xxxxxxx", "HTTPStatusCode": 200, "HTTPHeaders": {"server": "Server", "date": "Fri, 09 Feb 2018 08:01:13 GMT", "content-type": "text/xml", "content-length": "378", "connection": "keep-alive", "x-amzn-requestid": "xxxxxxx"}, "RetryAttempts": 0}} 4.AWS Console 메시지 등록 확인 View MessageDetail Message5.조회와 실행 1)SQS 메시지를 조회합니다.2)LambdaWorker 함수를 실행하고 > InvocationType으로 동기, 비동기 등의 실행 유형을 설정합니다. import boto3, json   def handle(event, context):     queue_url = 'https://sqs.xxxxxx.amazonaws.com/xxxxxx/sqs-test-1' sqs_client = boto3.client(         service_name='sqs',         region_name='xxxxxx'     )      lambda_client = boto3.client(         service_name='lambda',         region_name='ap-northeast-1'     )      # SQS 메시지 조회     response = sqs_client.receive_message(         QueueUrl=queue_url,         MaxNumberOfMessages=10,         AttributeNames=[             'All'         ]     )      print(json.dumps(response))      # {"Messages": [{"MessageId": "xxxxx-xxxx-xxxxxx", "ReceiptHandle": "xxxxx-xxxx-xxxxxx", "MD5OfBody": "xxxxxxx", "Body": "\uba54\uc2dc\uc9c0 \ub0b4\uc6a9", "Attributes": {"SenderId": "xxxxxxx", "ApproximateFirstReceiveTimestamp": "1518163931724", "ApproximateReceiveCount": "1", "SentTimestamp": "1518163466941"}}], "ResponseMetadata": {"RequestId": "", "HTTPStatusCode": 200, "HTTPHeaders": {"server": "Server", "date": "Fri, 09 Feb 2018 08:12:11 GMT", "content-type": "text/xml", "content-length": "1195", "connection": "keep-alive", "x-amzn-requestid": "xxxxxxx"}, "RetryAttempts": 0}}      for message in response['Messages']:         payload = {'message': message, 'queueUrl': queue_url}          # Lambda Worker 함수 실행         lambda_client.invoke(             FunctionName='lambda_worker',             InvocationType='Event',             Payload=json.dumps(payload)         ) 6.Lambda Consumer 함수 등록 Execution role : SQS ReceiveMessage, Lambda InvokeFunction, CloudWatchLogs7.확인-실행-삭제 1) 이벤트로 넘어온 메시지 내용을 확인하고2) 메시지 프로세스를 실행한 후3) SQS 메시지를 삭제합니다. import boto3, json   def handle(event, context):     sqs_client = boto3.client(         service_name='sqs',         region_name='xxxxxx'     )      message_body = json.loads(event['message']['Body'])      queue_url = event['queueUrl']     receipt_handle = event['message']['ReceiptHandle']      ###############     # 큐 메시지 처리     ############### # SQS 메시지 삭제     sqs_client.delete_message(         QueueUrl=queue_url,         ReceiptHandle=receipt_handle     ) 8.Lambda Worker 함수 등록 Execution role : SQS DeleteMessage, CloudWatchLogs9.CloudWatch의 Event Rule 등록 Event RulesCreate Rule10.1분에 한 번씩 지정한 Lambda 함수를 실행하여 SQS 메시지 확인 참고)이것만은 꼭 알아두세요! 여러 대의 서버에 메시지 사본을 저장하기 때문에 가끔씩 메시지 사본을 받거나 삭제하는 중엔 저장 서버 중 하나를 사용할 수 없을 수도 있다고 합니다. 이 경우, 해당 문제가 발생하면 사용할 수 없는 서버의 메시지가 삭제되지 않아, 메시지를 다시 가져와야 하는 문제가 생길 수 있습니다. 그러므로 애플리케이션에서 동일 메시지를 두 번 이상 처리하는 것도 대비해야 합니다.Conclusion지금까지 AWS 환경에서 SQS, Lambda, CloudWatch EventRule을 이용한 메시지 대기열 등록과 처리에 대한 기본 예제들을 실행해봤습니다. AWS의 다른 서비스들과 같이 아주 간단한 방법으로 메시지 대기열을 이용할 수 있었습니다. 오늘 살펴본 방법들을 활용하면 동영상 트랜스 코딩 등의 작업을 비롯해 분산 애플리케이션 간의 데이터 처리에도 유용하게 사용할 수 있을 겁니다. ps.아마존 형님들의 IT 인프라를 이용하여 편하게 개발에만 집중합시다. 참고 1) 각 서비스 매뉴얼은 아래 페이지 링크 참조하면 된다.SQSLambdaboto3 2)2018년 2월 기준이다. 3)표준 대기열과 FIFO 대기열의 특징은 아래와 같으며 자세한 내용은 매뉴얼에 정리되어 있다. 표준 대기열 : 무제한 처리량, 최선 정렬FIFO 대기열 : 높은 처리량, 선입선출 전송 글이상근 팀장 | R&D 개발1팀[email protected]브랜디, 오직 예쁜 옷만#브랜디 #개발문화 #개발팀 #업무환경 #인사이트 #경험공유

기업문화 엿볼 때, 더팀스

로그인

/