스토리 홈

인터뷰

피드

뉴스

조회수 4363

Kubernetes을 활용한 분산 부하 테스팅

Kubernetes을 활용한 분산 부하 테스팅동명의 글이 Google Cloud Platform에도 있으니 여기서는 여태까지 한 삽질과 교훈에 집중한다.첫 시도 ngrinder처음에는 ngrinder로 부하 테스트 환경을 구축하려 했다. 몇 달 전에 부하 테스트를 진행할 때 잠시 쓴 적이 있었기 때문에 굳이 다른 솔루션을 찾을 이유가 없었다. 하지만 결국 후회하고 다른 솔루션으로 넘어갔는데 그 이유를 중요한 순으로 꼽자면로컬 개발환경과 실제 환경이 차이가 많다. 로컬에서는 JUnit 기반으로 개발과 디버깅이 가능하다. 하지만 이렇게 작성한 코드를 ngrinder에 넣으려 하면 외부 라이브러리가 문제가 된다. .jar 등 패키지 파일을 업로드하는 방식이 아니라 Groovy 스크립트 따로 스크립트에서 사용하는 라이브러리 따로 업로드를 해야 하는데 상당히 번거롭다.웹 UI를 통해 설정한 내용이 내장 데이터베이스에 바이너리로 들어가기 때문에 ngrinder 데이터를 관리하기가 힘들다.개발이 활발하지 않다. 주력 개발자가 Naver를 떠났다는 이야기도 있긴 한데 아무튼 커밋 히스토리를 보면 개발이 정체되어 있는 건 분명하다.설계가 진보적이지 않다. 예를 들어 현재 쓰레드의 ID를 시스템이 직접 계산해서 주입하지 않고 개발자가 주어진 코드 스니펫을 Copy & Paste 해야 하는 이유를 모르겠다.등이 있다. 이런 까닭에 좀더 간단한 솔루션을 찾아보았다.대안몇 가지 대안을 살펴보았는데Artillery는 테스트 스크립트를 yaml로 기술하기 때문에 얼핏 쉬워보이지만 이런 식의 접근 방법은 매번 실망만 안겨주었다. 조금만 테스트 시나리오가 복잡해지면 일반적인 코딩보다 설정 파일이 훨씬 짜기가 어렵고 이해하기도 어렵다.config: target: 'https://my.app.dev' phases: - duration: 60 arrivalRate: 20 defaults: headers: x-my-service-auth: '987401838271002188298567' scenarios: - flow: - get: url: "/api/resource"Gatling은 아직 분산 서비스를 지원하지 않아서 제외했다. 팀 내에 Scala 개발경험이 있는 사람이 극소수인 점도 문제였다.Locust로 정착이런 까닭에 Locust로 넘어왔다. 장점은파이썬 스크립트로 시나리오를 작성하니 내부에 개발인력이 충분하다.로컬환경과 실제 부하테스팅 환경이 동일하다. 즉, 디버깅하기 쉽다.Locust 데이터를 Dockerize하기 쉽다.한마디로 ngrinder에서 아쉬웠던 점이 모두 해결됐다. 반면 ngrinder에 비해 못한 면도 많긴 하다.통계가 세밀하지 않다.테스트 시나리오를 세밀하게 조정하기 힘들다.현재로썬 그때그때 가볍게 시나리오를 작성해서 가볍게 돌려보는 게 중요하지 세밀함은 그리 중요하지 않아서 Locust가 더 나아 보인다. 시나리오는 몰라도 통계의 경우, DataDog 같은 모니터링 시스템에서 추가로 정보를 제공받기 때문에 큰 문제도 아니긴 하다.결과물Locust on KubernetesGoogleCloudPlatform/distributed-load-testing-using-kubernetes에 있는 소소코드를 참고로 작업하면 된다. 단지 Dockerfile의 경우, 테스트 스크립트만 바뀌고 파이썬 패키지는 변경사항이 없는 경우에도 파이썬 스크립트 전체를 새로 빌드하는 문제가 있다.# Add the external tasks directory into /tasks ADD locust-tasks /locust-tasks# Install the required dependencies via pip RUN pip install -r /locust-tasks/requirements.txt 그러므로 이 부분을 살짝 고쳐주면 좋다.ADD locust-tasks/requirements.txt /locust-tasks/requirements.txtRUN pip install -r /locust-tasks/requirements.txtADD locust-tasks /locust-tasksngrinder on Kubernetesngrinder를 Kubernetes v1.4.0 위에서 돌리는데 사용한 설정은 다음과 같다. 참고로 dailyhotel/ngrinder-data는 ngrinder의 데이터만 따로 뽑아서 관리하는 도커 이미지이다.ControllerapiVersion: v1 kind: Service metadata:  name: ngrinder  labels:  app: ngrinder  tier: middle  dns: route53  annotations:  domainName: “ngrinder.test.com” spec:  ports:  # the port that this service should serve on  — name: port80  port: 80  targetPort: 80  protocol: TCP  — name: port16001  port: 16001  targetPort: 16001  protocol: TCP  — name: port12000  port: 12000  targetPort: 12000  protocol: TCP  — name: port12001  port: 12001  targetPort: 12001  protocol: TCP  — name: port12002  port: 12002  targetPort: 12002  protocol: TCP  — name: port12003  port: 12003  targetPort: 12003  protocol: TCP  — name: port12004  port: 12004  targetPort: 12004  protocol: TCP  — name: port12005  port: 12005  targetPort: 12005  protocol: TCP  — name: port12006  port: 12006  targetPort: 12006  protocol: TCP  — name: port12007  port: 12007  targetPort: 12007  protocol: TCP  — name: port12008  port: 12008  targetPort: 12008  protocol: TCP  — name: port12009  port: 12009  targetPort: 12009  protocol: TCP  selector:  app: ngrinder  tier: middle  type: LoadBalancer  — - apiVersion: extensions/v1beta1 kind: Deployment metadata:  name: ngrinder spec:  replicas: 1  template:  metadata:  labels:  app: ngrinder  tier: middle  spec:  containers:  — name: ngrinder-data  image: dailyhotel/ngrinder-data:latest  imagePullPolicy: Always  volumeMounts:  — mountPath: /opt/ngrinder-controller  name: ngrinder-data-volume  — name: ngrinder  image: ngrinder/controller:latest  resources:  requests:  cpu: 800m  ports:  — containerPort: 80  — containerPort: 16001  — containerPort: 12000  — containerPort: 12001  — containerPort: 12002  — containerPort: 12003  — containerPort: 12004  — containerPort: 12005  — containerPort: 12006  — containerPort: 12007  — containerPort: 12008  — containerPort: 12009  volumeMounts:  — mountPath: /opt/ngrinder-controller  name: ngrinder-data-volume  volumes:  — name: ngrinder-data-volume  emptyDir: {}AgentsapiVersion: extensions/v1beta1 kind: Deployment metadata:  name: ngrinder-agent spec:  replicas: 5  template:  metadata:  labels:  app: ngrinder-agent  tier: middle  spec:  containers:  — name: ngrinder-agent  image: ngrinder/agent:latest  imagePullPolicy: Always  resources:  requests:  cpu: 300m  args: [“ngrinder.test.com:80”]구 블로그 시절의 댓글#데일리 #데일리호텔 #개발 #개발자 #개발팀 #기술스택 #도입후기 #일지 #Kubernetes #인사이트
조회수 690

HBase Meetup - 비트윈에서 HBase를 사용하는 방법

비트윈에서는 서비스 초기부터 HBase를 주요 데이터베이스로 사용하였으며 사용자 로그를 분석하는 데에도 HBase를 사용하고 있습니다. 지난 주 금요일(11월 15일)에 HBase를 만든 Michael Stack 씨가 한국을 방문하게 되어 ZDNet 송경석 팀장님의 주최 하에 HBase Meetup Seoul 모임을 가졌습니다. 그 자리에서 VCNC에서 비트윈을 운영하면서 HBase를 사용했던 경험들이나 HBase 트랜잭션 라이브러리인 Haeinsa에 대해 간단히 소개해 드리는 발표 기회를 가질 수 있었습니다. 이 글에서 발표한 내용에 대해 간단히 소개하고자 합니다.비트윈 서비스에 HBase를 사용하는 이유비트윈에서 가장 많이 사용되는 기능 중 하나가 채팅이며, 채팅은 상대적으로 복잡한 데이터 구조나 연산이 필요하지 않기 때문에 HBase 의 단순한 schema 구조가 큰 문제가 되지 않습니다. 특히 쓰기 연산이 다른 기능보다 많이 일어나기 때문에 높은 쓰기 연산 성능이 필요합니다. 그래서 메세징이 중심이 되는 서비스는 높은 확장성(Scalability)과 쓰기 성능을 가진 HBase가 유리하며 비슷한 이유로 라인이나 페이스북 메신저에서도 HBase를 사용하는 것이라고 짐작할 수 있습니다.로그 분석에도 HBase를 사용합니다비트윈은 사용자 로그 분석을 통해서 좀 더 나은 비트윈이 되기 위해서 노력하고 있습니다. 비트윈 사용자가 남기는 로그의 양이 하루에 3억건이 넘기 때문에 RDBMS에 저장하여 쿼리로 분석하기는 힘듭니다. 그래서 로그 분석을 위해 분산 데이터 처리 프레임워크인 Hadoop MapReduce를 이용하며 로그들은 MapReduce와 호환성이 좋은 HBase에 저장하고 있습니다. 또한 이렇게 MapReduce 작업들을 통해 정제된 분석 결과를 MySQL에 저장한 후에 다양한 쿼리와 시각화 도구들로 custom dashboard를 만들어 운영하고 있습니다. 이를 바탕으로 저희 Biz development팀(사업개발팀)이나 Data-driven팀(데이터 분석팀)이 손쉽게 insight를 얻어낼 수 있도록 돕고 있습니다.HBase를 사용하면서 삽질 했던 경험HBase를 사용하면서 처음에는 잘못 사용하고 있었던 점이 많았고 차근차근 고쳐나갔습니다. Region Split과 Major Compaction을 수동으로 직접 하는 등 다양한 최적화를 통해 처음보다 훨씬 잘 쓰고 있습니다. HBase 설정 최적화에 대한 이야기는 이전에 올렸던 블로그 글에서도 간단히 소개한 적이 있으니 확인해보시기 바랍니다.HBase 트랜잭션 라이브러리 해인사Haeinsa는 HBase에서 Multi-Row 트랜잭션을 제공하기 위한 라이브러리입니다. 오픈소스로 공개되어 있으며 Deview에서도 발표를 했었습니다. HBase에 아무런 변형도 가하지 않았기 때문에 기존에 사용하던 HBase 클러스터에 쉽게 적용할 수 있습니다. 비트윈에 실제로 적용되어 하루 3억 건 이상의 트랜잭션을 처리하고 있으며 다른 많은 NoSQL 기반 트랜잭션 라이브러리보다 높은 확장성과 좋은 성능을 가지고 있습니다.저희는 언제나 타다 및 비트윈 서비스를 함께 만들며 기술적인 문제를 함께 풀어나갈 능력있는 개발자를 모시고 있습니다. 언제든 부담없이 [email protected]로 이메일을 주시기 바랍니다!
조회수 1208

VCNC가 Hadoop대신 Spark를 선택한 이유 - VCNC Engineering Blog

요즘은 데이터 분석이 스타트업, 대기업 가릴 것 없이 유행입니다. VCNC도 비트윈 출시 때부터 지금까지 데이터 분석을 해오고 있고, 데이터 기반의 의사결정을 내리고 있습니다.데이터 분석을 하는데 처음부터 복잡한 기술이 필요한 것은 아닙니다. Flurry, Google Analytics 등의 훌륭한 무료 툴들이 있습니다. 하지만 이러한 범용 툴에서 제공하는 것 이상의 특수하고 자세한 분석을 하고 싶을 때 직접 많은 데이터를 다루는 빅데이터 분석을 하게 됩니다. VCNC에서도 비트윈의 복잡한 회원 가입 프로세스나, 채팅, 모멘츠 등 다양한 기능에 대해 심층적인 분석을 위해 직접 데이터를 분석하고 있습니다.빅데이터 분석 기술큰 데이터를 다룰 때 가장 많이 쓰는 기술은 Hadoop MapReduce와 연관 기술인 Hive입니다. 구글의 논문으로부터 영감을 받아 이를 구현한 오픈소스 프로젝트인 Hadoop은 클러스터 컴퓨팅 프레임웍으로 비싼 슈퍼컴퓨터를 사지 않아도, 컴퓨터를 여러 대 연결하면 대수에 따라서 데이터 처리 성능이 스케일되는 기술입니다. 세상에 나온지 10년이 넘었지만 아직도 잘 쓰이고 있으며 데이터가 많아지고 컴퓨터가 저렴해지면서 점점 더 많이 쓰이고 있습니다. VCNC도 작년까지는 데이터 분석을 하는데 MapReduce를 많이 사용했습니다.주스를 만드는 과정에 빗대어 MapReduce를 설명한 그림. 함수형 프로그래밍의 기본 개념인 Map, Reduce라는 프레임을 활용하여 여러 가지 문제를 병렬적으로 처리할 수 있다. MapReduce slideshare 참조MapReduce는 슈퍼컴퓨터 없이도 저렴한 서버를 여러 대 연결하여 빅데이터 분석을 가능하게 해 준 혁신적인 기술이지만 10년이 지나니 여러 가지 단점들이 보이게 되었습니다. 우선 과도하게 복잡한 코드를 짜야합니다. 아래는 간단한 Word Count 예제를 MapReduce로 구현한 것인데 매우 어렵고 복잡합니다.MapReduce로 단어 갯수를 카운트하는 간단한 예제 (Java). 많은 코드를 작성해야 한다.이의 대안으로 SQL을 MapReduce로 변환해주는 Hive 프로젝트가 있어 많은 사람이 잘 사용하고 있지만, 쿼리를 최적화하기가 어렵고 속도가 더 느려지는 경우가 많다는 어려움이 있습니다.MapReduce의 대안으로 최근 아주 뜨거운 기술이 있는데 바로 Apache Spark입니다. Spark는 Hadoop MapReduce와 비슷한 목적을 해결하기 위한 클러스터 컴퓨팅 프레임웍으로, 메모리를 활용한 아주 빠른 데이터 처리가 특징입니다. 또한, 함수형 프로그래밍이 가능한 언어인 Scala를 사용하여 코드가 매우 간단하며, interactive shell을 사용할 수 있습니다.Spark으로 단어 개수를 카운트하는 간단한 예제 (Scala). MapReduce에 비해 훨씬 간단하다.Spark과 MapReduce의 성능 비교. I/O intensive 한 작업은 성능이 극적으로 향상되며, CPU intensive 한 작업의 경우에도 효율이 더 높다. (자료: RDD 논문)Apache Spark는 미국이나 중국에서는 현재 Hadoop을 대체할만한 기술로 급부상하고 있으며, 국내에도 최신 기술에 발 빠른 사람들은 이미 사용하고 있거나, 관심을 갖고 있습니다. 성능이 좋고 사용하기 쉬울 뿐 아니라, 범용으로 사용할 수 있는 프레임웍이기에 앞으로 더 여러 분야에서 많이 사용하게 될 것입니다. 아직 Spark를 접해보지 못하신 분들은 한번 시간을 내어 살펴보시길 추천합니다.기존의 데이터 분석 시스템 아키텍처기존의 데이터 분석 시스템 아키텍처기존의 시스템은 비용을 줄이기 위해 머신들을 사무실 구석에 놓고 직접 관리했으며, AWS S3 Tokyo Region에 있는 로그를 다운받아 따로 저장한 뒤, MapReduce로 계산을 하고 dashboard를 위한 사이트를 따로 제작하여 운영하고 있었습니다.이러한 시스템은 빅데이터 분석을 할 수 있다는 것 외에는 불편한 점이 많았습니다. 자주 고장 나는 하드웨어를 수리하느라 바빴고, 충분히 많은 머신을 확보할 여유가 없었기 때문에 분석 시간도 아주 오래 걸렸습니다. 그리고 분석부터 시각화까지 과정이 복잡하였기 때문에 간단한 것이라도 구현하려면 시간과 노력이 많이 들었습니다.Spark과 Zeppelin을 만나다이때 저희의 관심을 끈 것이 바로 Apache Spark입니다. MapReduce에 비해 성능과 인터페이스가 월등히 좋은 데다가 0.x 버전과는 달리 1.0 버전에서 많은 문제가 해결되면서 안정적으로 운영할 수 있어 비트윈 데이터 분석팀에서는 Spark 도입을 결정했습니다.Apache Zeppelin은 국내에서 주도하고 있는 오픈소스 프로젝트로써, Spark를 훨씬 더 편하고 강력하게 사용할 수 있게 해주는 도구입니다. 주요한 역할은 노트북 툴, 즉 shell에서 사용할 코드를 기록하고 재실행할 수 있도록 관리해주는 역할과 코드나 쿼리의 실행 결과를 차트나 표 등으로 시각화해서 보여주는 역할입니다. VCNC에서는 Zeppelin의 초기 버전부터 관심을 가지고 살펴보다가, Apache Spark를 엔진으로 사용하도록 바뀐 이후에 활용성이 대폭 좋아졌다고 판단하여 데이터 분석에 Zeppelin을 도입하여 사용하고 있고, 개발에도 참여하고 있습니다.또한, 위에서 언급한 하드웨어 관리에 드는 노력을 줄이기 위해서 전적으로 클라우드를 사용하기로 함에 따라서1 아래와 같은 새로운 구조를 가지게 되었습니다.새로운 데이터 분석 시스템 아키텍처새로운 데이터 분석 시스템 아키텍처새로운 데이터 분석 시스템은 아키텍처라고 하기에 다소 부끄러울 정도로 간단합니다. 애초에 전체 시스템 구성을 간단하게 만드는 것에 중점을 두었기 때문입니다. 대략적인 구성과 활용법은 아래와 같습니다.모든 서버는 AWS 클라우드를 이용수 대의 Zeppelin 서버, 수 대의 Spark 서버운영Spark 서버는 메모리가 중요하므로 EC2 R3 instance 사용로그는 별도로 저장하지 않고 서비스 서버에서 S3로 업로드하는 로그를 곧바로 가져와서 분석함중간 결과 저장도 별도의 데이터베이스를 두지 않고 S3에 파일로 저장Zeppelin의 scheduler 기능을 이용하여 daily batch 작업 수행별도의 dashboard용 Zeppelin을 통해 중간 결과를 시각화하며 팀에 결과 공유이렇게 간단한 구조이긴 하지만 Apache Spark와 Apache Zeppelin을 활용한 이 시스템의 능력은 기존 시스템보다 더 강력하고, 더 다양한 일을 더 빠르게 해낼 수 있습니다.기존현재일일 배치 분석코드 작성 및 관리가 어려움Zeppelin의 Schedule 기능을 통해 수행Interactive shell로 쉽게 데이터를 탐험오류가 생긴 경우에 shell을 통해 손쉽게 원인 발견 및 수정 가능Ad-hoc(즉석) 분석복잡하고 많은 코드를 짜야 함분석 작업에 수 일 소요Interactive shell 환경에서 즉시 분석 수행 가능Dashboard별도의 사이트를 제작하여 운영관리가 어렵고 오류 대응 힘듦Zeppelin report mode 사용해서 제작코드가 바로 시각화되므로 제작 및 관리 수월성능일일 배치 분석에 약 8시간 소요메모리를 활용하여 동일 작업에 약 1시간 소요이렇게 시스템을 재구성하는 작업이 간단치는 않았습니다. 이전 시스템을 계속 부분적으로 운영하면서 점진적으로 재구성 작업을 하였는데 대부분 시스템을 옮기는데 약 1개월 정도가 걸렸습니다. 그리고 기존 시스템을 완전히 대체하는 작업은 약 6개월 후에 종료되었는데, 이는 분석 성능이 크게 중요하지 않은 부분들에 대해서는 시간을 두고 여유 있게 작업했기 때문이었습니다.Spark와 Spark SQL을 활용하여 원하는 데이터를 즉석에서 뽑아내고 공유하는 예제Zeppelin을 활용하여 인기 스티커를 조회하는 dashboard 만드는 예제결론비트윈 데이터 분석팀은 수개월에 걸쳐 데이터 분석 시스템을 전부 재구성하였습니다. 중점을 둔 부분은빠르고 효율적이며 범용성이 있는 Apache Spark, Apache Zeppelin을 활용하는 것최대한 시스템을 간단하게 구성하여 관리 포인트를 줄이는 것두 가지였고, 그 결과는 매우 성공적이었습니다.우선 데이터 분석가 입장에서도 관리해야 할 포인트가 적어져 부담이 덜하고, 이에 따라 Ad-hoc분석을 수행할 수 있는 시간도 늘어나 여러 가지 데이터 분석 결과를 필요로 하는 다른 팀들의 만족도가 높아졌습니다. 새로운 기술을 사용해 본 경험을 글로 써서 공유하고, 오픈소스 커뮤니티에 기여할 수 있는 시간과 기회도 생겼기 때문에 개발자로서 보람을 느끼고 있습니다.물론 새롭게 구성한 시스템이 장점만 있는 것은 아닙니다. 새로운 기술들로 시스템을 구성하다 보니 세세한 기능들이 아쉬울 때도 있고, 안정성도 더 좋아져야 한다고 느낍니다. 대부분 오픈소스 프로젝트이므로, 이러한 부분은 적극적으로 기여하여 개선하여 나갈 계획입니다.비트윈 팀에서는 더 좋은 개발환경, 분석환경을 위해 노력하고 있으며 이는 더 좋은 서비스를 만들기 위한 중요한 기반이 된다고 생각합니다. 저희는 항상 좋은 개발자를 모시고 있다는 광고와 함께 글을 마칩니다.연관 자료: AWS 한국 유저 그룹 - Spark + S3 + R3 을 이용한 데이터 분석 시스템 만들기↩
조회수 5415

Next.js 튜토리얼 1편: 시작하기

* 이 글은 Next.js의 공식 튜토리얼을 번역한 글입니다.** 오역 및 오탈자가 있을 수 있습니다. 발견하시면 제보해주세요!목차1편: 시작하기  - 현재 글2편: 페이지 이동3편: 공유 컴포넌트4편: 동적 페이지5편: 라우트 마스킹6편: 서버 사이드7편: 데이터 가져오기8편: 컴포넌트 스타일링9편: 배포하기개요요즘은 싱글 페이지 JavaScript 애플리케이션을 구현하는게 꽤 어려운 작업이라는 것을 대부분 알고 있습니다. 다행히도 간단하고 빠르게 애플리케이션들을 구현할 수 있도록 도와주는 몇 가지 프로젝트들이 있습니다.Create React App이 아주 좋은 예시입니다.그렇지만 여전히 적당한 애플리케이션을 구현하기까지의 러닝 커브는 높습니다. 클라이언트 사이드 라우팅과 페이지 레이아웃 등을 배워야하기 때문입니다. 만약 더 빠른 페이지 로드를 하기위해 서버 사이드 렌더링을 수행하고 싶다면 더 어려워집니다.그래서 우리는 간단하지만 자유롭게 설정할 수 있는 무언가가 필요합니다.어떻게 PHP로 웹 애플리케이션을 만드는지 떠올려봅시다. 몇 개의 파일들을 만들고, PHP 코드를 작성한 다음 간단히 배포합니다. 라우팅에 대해 걱정하지 않아도 됩니다. 그리고 이 애플리케이션은 기본적으로 서버에서 렌더링됩니다.이것이 바로 우리가 Next.js에서 수행해주는 일입니다. PHP 대신에 JavaScript와 React를 사용하여 애플리케이션을 구현합니다. Next.js가 제공하는 유용한 기능들은 다음과 같습니다:기본적으로 서버 사이드에서 렌더링을 해줍니다.더 빠르게 페이지를 불러오기 위해 자동으로 코드 스플릿을 해줍니다.페이지 기반의 간단한 클라이언트 사이드 라우팅을 제공합니다.Hot Module Replacement(HMR)을 지원하는 Webpack 기반의 개발 환경을 제공합니다.Express나 다른 Node.js HTTP 서버를 구현할 수 있습니다.사용하고 있는 Babel과 Webpack 설정을 원하는 대로 설정할 수 있습니다.설치하기Next.js는 Windows, Mac, Linux와 같은 환경에서 동작합니다. Next.js 애플리케이션을 빌드하기 위해서는 Node.js가 설치되어 있어야 합니다.그 외에도 코드를 작성하기 위한 텍스트 에디터와 몇 개의 명령어들을 호출하기 위한 터미널 애플리케이션이 필요합니다.Windows 환경이라면 PowerShell을 사용해보세요.Next.js는 모든 셀과 터미널에서 동작하지만 튜토리얼에서는 몇 개의 특정한 UNIX 명령어를 사용합니다.더 쉽게 튜토리얼을 따르기 위해서는 PowerShell 사용을 추천합니다.맨 먼저 다음 명령어를 실행시켜 간단한 프로젝트를 생성하세요:$ mkdir hello-next$ cd hello-next$ npm init -y$ npm install --save react react-dom next$ mkdir pages그런 다음 hello-next 디렉토리에 있는 "package.json" 파일을 열고 다음과 같은 NPM 스크립트를 추가해주세요.이제 모든 준비가 끝났습니다. 개발 서버를 실행시키기 위해 다음 명령어를 실행시키세요:$ npm run dev명령어가 실행되었다면 브라우저에서 http://localhost:3000 페이지를 여세요.스크린에 보이는 출력값은 무엇인가요?- Error No Page Found- 404 - This page could not be found- Hello Next.js- Hello World404 Page다음과 같은 404 페이지가 보일 것입니다.첫 번째 페이지 생성하기첫 번째 페이지를 생성해봅시다.pages/index.js 파일을 생성하고 다음의 내용을 추가해주세요:이제 http://localhost:3000 페이지를 다시 열면 "Hello Next.js" 글자가 있는 페이지가 보일 것입니다.pages/index.js 모듈에서 간단한 React 컴포넌트를 export 했습니다. 여러분도 React 컴포넌트를 작성하고 export 할 수 있습니다.React 컴포넌트가 default export 인지 확인하세요.이번에는 인덱스 페이지에서 문법 에러를 발생시켜봅시다. 다음은 그 예입니다: (간단하게HTML 태그를 삭제하였습니다.)http://localhost:3000 페이지에 로드된 애플리케이션은 어떻게 되었나요?- 아무일도 일어나지 않는다- 페이지를 찾을 수 없다는 에러가 발생한다- 문법 에러가 발생한다- 500 - Internal Error가 발생한다에러 다루기기본적으로 Next.js는 이런 에러들을 추적하고 브라우저에 표시해주므로 에러들을 빨리 발견하고 고칠 수 있습니다.문제를 해결하면 전체 페이지를 다시 로드하지 않고 그 페이지가 즉시 표시됩니다. Next.js에서 기본적으로 지원되는 웹팩의 hot module replacement 기능을 사용하여 이 작업을 수행합니다.You are Awesome첫 번째 Next.js 애플리케이션을 구현하였습니다! 어떠신가요? 마음에 드신다면 더 많이 배워봅시다.마음에 들지 않는다면 우리에게 알려주세요. Github 저장소의 issue나 Slack의 #next 채널에서 이야기 할 수 있습니다.#트레바리 #개발자 #안드로이드 #앱개발 #Next.js #백엔드 #인사이트 #경험공유
조회수 2201

전산팀의 홍일점, 김민서 개발자

안녕하세요 써티입니다!벌써 4월 중순, 벚꽃 흩날리는 봄이에요.비욘드펀드는 오늘도 상품 두개나 오픈했어요!오늘의 인터뷰 주인공은전산팀의 홍일점! 김민서 개발자입니다.입사 4개월차 신입이지만맡은 몫을 완벽히 해내고 계신 민서님:)사내인터뷰를 거부하며 3주간 저를 피해다니셨지만............ 언주역 태양빌딩에서 나의 인터뷰를 피할 수 있는 자 아무도 없으리.재밌는 이야기 들어볼까요?1. 안녕하세요 민서님. 전산팀의 유일한 여자 개발자이시네요. 현재 맡고 있는 일을 간단히 설명해주세요.일단 전산팀은 부장님, 과장님, 대리님, 저까지 총 4명인데요. 저는 비욘드펀드 홈페이지 프론트엔드를 맡고 있습니다.2. 프론트엔드가 뭔가요? (역시 개발자 인터뷰가 젤 어렵;;)음….홈페이지 구성할 때 프론트엔드와 백엔드가 있는데요. 프론트엔드는 브라우저로 보이는 기능들을 만드는거고 백엔드는 프론트엔드가 기능을 제대로 할 수 있도록 해주는 거거든요. 지금 백엔드는 과장님이 하고 계시고요. 제가 하는 일은 사용자들이 비욘드펀드 홈페이지에 들어갔을 때 보이는 모든 것들이라고 생각하시면 됩니다.3. 여기가 첫 직장이시라고 들었어요. 어떻게 오게 되셨어요?비욘드플랫폼에 합류하기 전에 한국정보기술연구원(Kitri) 산하 학원에서 웹/어플리케이션 과정을 공부하고 있었는데요. 추천 채용이 들어와서 면접을 보게 됐어요.4. 그러면 전공도 공대쪽이겠네요? 혹시…. 공대 아름이?+_+여대였어요……………………(절망) (역시 여대나온 써티도 함께 웁니다)서울 모 여대에서 컴퓨터학과를 졸업했습니다^^5. 면접 보고 어떠셨어요? P2P금융이라는 산업에 대해서는 알고 계셨었나요?잘 몰랐어요. 금융회사의 개발자가 되라라고는 상상도 못했죠. 사실 스타트업에서 일한다는 생각 자체를 해본 적이 없어요. 아는 분이 스타트업에 다니셔서 제안을 받아본 적은 있지만 진지하게 고려해보지 않았었거든요. 항상 일이 많은 전산팀...... ㅠㅠ 태양빌딩 3층에서는 커피를 양손에 들고 전산실로 걸어가는 그녀의 모습을 종종 발견할 수 있다.6. 오, 그런데 비욘드플랫폼에는 합류를 하신거네요?처음에는 회사소개에 ‘카드론’, ‘대부업’ 같은 단어가 나오니까 걱정이 좀 됐었어요. 사실 아직도 P2P금융이 일반인들에게는 많이 알려져 있지 않잖아요. 더구나 저처럼 금융에 대해서 잘 모르는 사람들은 더더욱 들어본 적이 없고요. 친구들에게 ‘여기 어떤 것 같아?’라고 물어봐도 다들 가지말라고 하더라고요ㅎㅎ그런데 홈페이지 들어가보니까 깔끔한 분위기가 맘에 들었어요. 트렌디한 회사 같다는 느낌? 대표님도 삼일회계법인 임원 출신의 대단한 분이라서 믿고 입사를 하게 됐어요.7. 그래서 P2P금융에는 관심을 좀 갖게 되셨어요?아니요. 돈이 없어요ㅋㅋㅋㅋㅋㅋㅋ 농담이고요. 비욘드펀드 상품이 좋은건 알겠는데 개발자다 보니 솔직히 완벽히 상품을 이해하진 못했어요. 지금은 사회초년생이라 투자할만한 돈은 없지만 목돈이 생기면 P2P로 재테크해볼 생각입니다.8. 비욘드펀드가 이제 좀 커나가고 있는데, 어떤 회사가 됐음 좋겠어요?비욘드펀드라고 말했을때 ‘거기 믿을만하다!’라는 평을 들을 수 있는 그런 회사가 됐으면 좋겠습니다. (사내 복지 쪽으로는 아침을 주면 좋겠…)9. 일적으로 목표가 있다면?솔직히 아직 잘 모르겠어요. 그게 문제라고 생각하기도 하면서도… 이제 4개월차 개발자니까 한창 고민할 때라고 생각해요. 예전에는 모호하게 알던 것들이 이제 조금 구체적으로 다가와요. 점점 더 디테일하게 알아가면서 깊이 공부하고 싶은 부분들이 생기는 것 같아요. 일단은 비욘드플랫폼에서 주어진 일을 열심히 해나가는 것이 목표입니다.10. 마지막으로 민서님이 제일 좋아하는건?누워있는거요. 주말에 약속 잡는 친구들이 제일 싫어요. 완전 집순이거든요. 그래서 우리 회사 휴게실에 있는 영롱한 오렌지색의 이케아 빈백이 너무 탐나요. 나중에 사려고요.민서님이 좋아하는 휴게실 빈백(옆)에서 진행된 즐거운 인터뷰!요즘 비욘드펀드가 상품출시를 활발히 하다보니 민서님이 많이 바쁘신 것 같은데, 화이팅입니다:)#비욘드플랫폼서비스 #비욘드펀드 #개발자 #인터뷰 #팀원 #팀원소개 #팀원인터뷰 #사내문화 #조직문화 #기업문화
조회수 476

자바스크립트, 웹페이지의 들러리에서 주인공으로!

지루한 통근(학) 시간. 대중교통으로 이동하는 동안에는 자연스럽게 스마트폰을 찾게 되지 않나요? SNS로 다른 사람과 연락을 하거나, 재미있는 영상을 보기도 하죠. 이때 우리는 웹페이지에 있는 텍스트, 이미지, 영상 등 수많은 정보를 보게 됩니다. 웹페이지를 보기 위해 어떤 브라우저를 사용하시나요? 대부분 Chrome이나 Internet Explorer 등을 사용하실 거예요. 이 브라우저를 개발하다가 만들어진 언어에 대해 이야기해볼게요.움직이는 브라우저 ― 자바스크립트의 탄생지금은 대부분 Chrome이나 Internet Explorer와 같은 브라우저를 사용하지만 1990년대 초반만 해도 Mosaic(모자이크)라는 브라우저를 사용했어요.Mosaic 브라우저의 Yahoo! 페이지 (출처 : dweb3d.com on Pinterest)이 당시의 웹페이지는 대부분 흰색 바탕에 검은색 글씨, 그리고 파란색 글씨로 된 링크로만 구성되어 있었는데요. 지금의 웹페이지와 비교해보면 굉장히 지루하고 단조롭죠.아마도 같은 지루함을 느꼈던 것 같은 '브랜든 아이크'라는 사람이 새로운 브라우저를 개발했는데 단 10일 만에 웹페이지에 동작을 넣을 수 있는 언어를 뚝딱 만들어냈어요. 지금처럼 버튼을 눌렀을 때 안내 창이 뜨게 하는 등 좀 더 생동감 있는 웹페이지를 만들 수 있게 된 거예요.이때 만들어진 언어가 바로 JavaScript 랍니다!Java? Javascript! ― 이름의 유래Java와 [removed] 이름이 유사하네요!JavaScript라는 언어가 생소한 분들도 아마 Java라는 언어는 한 번쯤 들어보셨을 거예요. 이 두 언어는 이름이 비슷하지만 전혀 다른 언어예요. 마치 인도와 인도네시아처럼요!이와 관련해서 재밌는 일화가 있는데, 사실 지금의 JavaScript는 초창기에 Mocha(모카)라는 이름으로 개발되었어요. 그런데 당시에 Java 언어가 개발되어 큰 인기를 끌게 되자 Java를 만든 회사와 협약을 체결해 이름을 JavaScript로 변경했답니다. Java의 인기가 높아짐에 따라 덩달아 JavaScript의 인기도 높아지게 되었죠! Javascript 전성시대JavaScript의 인기가 높아지게 된 이유는 비단 Java의 유명세 때문만은 아니에요. 2000년대 중반에 들어서서 기술이 점점 더 발전함에 따라 웹페이지에서 시각적인 것이 중요해졌는데, 태생부터가 웹페이지를 생동감 있게 만들기 위해 개발된 JavaScript는 이런 상황에 활용되기 제격이었던 겁니다.많은 사람들이 웹페이지에 JavaScript를 사용하게 되고, 또 JavaScript를 잘 활용하기 위해 관련 정보들을 모은 라이브러리(자료집)가 발달하면서 활용 분야는 더욱더 넓어졌어요.Node.js : JavaScript의 변신!특히 node.js라고 하는 라이브러리는 JavaScript가 웹페이지를 표현하는 역할에 그치지 않고, 웹페이지와 웹페이지 사이를 연결해주는 연결고리(서버) 역할을 하게 해주었어요.이렇게 JavaScript를 사용하는 분야가 증가하면서 사용자 수도 폭발적으로 증가하게 되었고 현재 JavaScript는 웹 개발에 필수적인 언어로 자리매김하게 되었습니다.또 다른 장점 ― Javascript를 배우는 이유수많은 사람들이 JavaScript를 배우려고 하는 이유는 또 있어요. 우선 C언어나 Java보다 시작하기 쉽다는 점 때문인데요. 예를 들면 C나 Java는 변수를 선언할 때 숫자형, 문자형 등 자료의 유형을 명시해주어야 하지만 JavaScript는 그럴 필요가 없어요. 쉽게 이야기하면 앞의 두 언어는 자료를 상자에 담아서 관리할 때 반드시 자료의 크기에 맞는 상자를 준비해줘야 하지만 JavaScript는 그럴 필요 없이 마치 요술 상자처럼 하나의 상자에 모든 자료를 담을 수 있죠! 그래서 어떤 자료를 다룰 때 그 자료의 형태를 일일이 따져보지 않아도 된다는 편리함이 있어요.JavaScript는 앞서 이야기했던 것처럼 웹페이지를 꾸미거나 이들의 연결망을 만들고, 엄청 많은 자료들을 저장하는 저장소(데이터베이스)를 짓는 데에도 쓰이는 등 활용하는 분야가 무궁무진합니다.웹페이지를 보조하기 위해 탄생한 언어가 웹페이지를 만들기 위한 주류 언어가 되다니, 정말 놀랍지 않나요? 앞으로 JavaScript가 어떤 분야에서 활약하게 될지 더욱더 기대되는 이유입니다!>> 자바스크립트 과목 보기(참고 자료)Press release announcing JavaScript, "Netscape and Sun announce JavaScript", PR Newswire, December 4, 1995.Brendan Eich (3 April 2008). "Popularity". Retrieved 2018-07-06.              
조회수 2656

WHATAP Python APM 이야기...

백엔드 서비스로 Python을 사용한다면 만나게될 상황을보다 쉽게 해결하기 위한 와탭의 Python APM, 개발하게 된 이유입니다.파이썬은 배우기 쉽고, 어디서나 실행되는 언어라고 이야기되며, 인기도 높습니다. 생각보다 많은 곳에서 배울 수 있으며, 혼자 배우기도 좋습니다. 그런데, 이 규모가 확대되어서 스타트업의 경우에 Python을 사용하여 백엔드 서비스를 개발하는 경우를 찾는 것이 어렵지 않습니다. 또는, 수학적인 알고리즘이거나 ML(머신러닝)과 같은 영역이거나 블록체인등에서 Python을 사용하여 API geteway나 broker를 사용하는 경우에 한정한 상황을 고려하고 있습니다.Python으로 백엔드 서비스를 만들 때에는 성능과 설계 부분에 대해서 많은 걱정을 하게 됩니다. 이런 상황을 만나게되는 개발자는 여러가지 문제를 만나게 됩니다. 그 문제에 와탭은 집중합니다.!와탭은 백엔드 서비스를 Python으로 개발시에 만나게 되는 상황을 가장 최우선으로 생각하게 되었습니다.Python으로 '설계', '개발'되고 '테스트'된 후에 '배포'되는 상황에서 서비스의 불완전함과 속도상의 문제, 리소스의 불협화음등을 '유지보수'하는 단계를 '성능 튜닝'이라고 정의하고, 이를 고려한 상황을 보다 단순화하는 것이라고 생각하게 되었습니다. 이를 어떻게 처리하느냐가 와탭 Python의 핵심 가치라고 생각하였습니다.----- 이 부분은 Python korea 페이스북에서 '배권한'님이 지적하신 내용을 기반으로 일부 첨언되었습니다.----- python native 개발자들에게는 불필요한 설명에 해당됩니다.파이썬은 분명, 읽기 쉽고 사용하기 쉬운 것은 장점이며, 라즈베리파이 위에서 동작되는 기민함은 정말 매력적입니다. <- 원래 문장.(* 현재에는 jvm도 동작합니다. 하지만, 작고 기민하게 다양한 IoT 디바이스에서 폭넓게 활용되는 것은 파이썬의 장점은 분명하지 않나 합니다. 이 부분에 대한 지적이 있어서 첨언합니다. )내부 구성상 비동기식으로 쓰레딩이 아니라, 단일 이벤트 루프를 사용하는 비동기식 작성은 매우 효과적입니다. <- 원래 문장.(* 이 부분도 asyncio나 gevent등에 대한 이야기이고, CPython의 언어 구현상 GIL때문에 쓰레드가 비효율적이라는 이야기를 거론하고 싶었으나, 일반적으로 파이썬에 대한 언어를 사용할때에 대부분 사용하는 이유가 단일 이벤트 루프기반의 비동기식 작성이 매우 일반적으로 사용되기 때문에, 이렇게 서술되었습니다. 하지만, 이런 설명은 백엔드로 Python을 사용하는 경우에 대부분의 프레임웍들에서 처리되고 있기 때문에 서술이 불분명하다는 지적이 있었습니다. 당연, 백엔드 서비스를 개발할때에 사용되는 wsgi interface등에 맞추어서 서술되는 경우에는 이런 설명이 무의미합니다.다만, 이렇게 서술한 이유는 Java를 기반으로 APM이 개발되어졌기 때문에 이 부분에 대한 서술이나 설명이 필요하다고 생각한 저의 과도한 설명이 되겠습니다.이 부분은 Python Native개발자들에게는 불필요한 설명이 되겠습니다. 하지만, 백엔드 서비스를 개발하면서 만나게될 환경에서는 이 부분에 대한 이해가 어느정도 필요하다고 생각되어 서술된 내용이라고 생각해주시면 감사하겠습니다. )----------------------------------------------------------------------------------------------------------------------이 방식은 복잡한 자원 경쟁이나 교착상태를 발생하지 않게 되며, 기본 코딩과 유지보수를 정말 수월하게 만들어 줍니다. 그만큼 일관성이 높은 수학 알고리즘을 구현하는데 매우 적합합니다. 하지만, 냉정하게, 비즈니스 로직이나 분기가 많은 업무 로직에 적합한 언어는 아닙니다.하지만, 수학적 알고리즘 기반의 주요 모듈 위에 데이터베이스가 일부 필요하고, 웹서비스의 형태로 가동되는 구조라면 파이썬은 매우 훌륭한 선택이 되고 있으며, 생각보다 많이 사용됩니다.그런 이유 중의 하나는 파이썬의 멀티패러다임 구성과 같은 구성에서는 자바에서처럼 굳이 프린트를 위해서 객체지향 클래스를 만들 필요 없이 간단한 함수형 스타일도 가능하게 구성이 됩니다. ( 자바 8에서는 이런 함수 기능도 추가되었습니다. )단순한 구조와 방식 때문에 파이썬 개발은 요즘처럼 ML이나 AI 등의 기술적 요소들이 많이 사용되는 환경에서는 매우 효과적입니다. 백엔드 파이썬 개발이 많이 보이게 되는 이유이기도 하죠.또한, 파이썬 개발의 단점이라고 지적되던 문제들도 현재에는 실행 속도 문제는 사실상 큰 문제가 되지 않는 상황입니다. 일례로, 파이파이(PyPY)로 실행된 파이썬 코드는 웬만한 수준의 C 코드보다 빠르게 동작합니다.굳이 더 지적하자면, 모바일 컴퓨팅과 브라우저에 따른 웹 애플리케이션 클라이언트는 굳이 파이썬으로 작성할 필요성을 느끼지 못한다고 이야기하는 정도입니다.하지만, 이런 파이썬 개발에 가장 큰 문제가 있습니다.테스팅 없이는 동작하기 어렵고,실제 동작 환경에서만 등장하는 오류의 발생파이썬의 특성상 동적 입력 형태에 따르는 더 많은 테스팅을 필요로 하고 있으며, 실제 실행시간에만 나타나는 오류를 찾는 것이 가장 큰 문제가 있습니다. 이 부분은 수많은 파이썬 개발자들을 괴롭히고 있습니다.( 단편적으로 파이썬 개발환경이 매우 고도화되어있지 않으며, 파이썬으로 백엔드 서비스를 만들 것이라고 예측하지 못한 점도 있을 것입니다. 앞으로 파이썬 개발이 더 고도화 되기를 기원합니다. )이 가장 큰 문제를 잡기 위해서와탭은 집중하였습니다.파이썬 백엔드 개발 시의 문제 해결!물론, Python도 디버깅에 대한 지원 유틸리티가 존재합니다.pdb라는 파이썬 디버깅 모듈을 통해서 Step over/Step into, 중단점(breakpoint) 설정, 콜 스택 검사, 소스 리스팅, 변수 치환 등을 할 수 있습니다.‘Phthon -m pdb 파이썬 파일. py’의 형태로 디버그 동작 화면에서 세부적인 동작을 트레이스 해보는 방식을 사용하거나, pdb모듈을 import 한 후에 pdb.set_trace()를 중단하고 싶은 부분에 넣어서 사용하는 방식도 사용됩니다. 또한, 디버그 세션을 사용하는 방식이며, PDB를 사용하여 디버깅하는 방식들도 흔하게 사용됩니다.PyCharm, PTVS, Spyder 등의 IDE를 사용해서 디버깅을 하는 방법은 전통적인 개발환경과 동일하게 사용할 수 있습니다.하지만, 이 방식들은 백엔드 서비스에는 맞지 않게 되며 개발자들은 백엔드 서비스 동작시에 디버그 추적을 위한 로그를 거는 방식을 흔하게 사용하게 됩니다. ( 너무도 전통적인 방식이죠. )정말 백엔드로 파이썬을 사용하고 있다면, 오류 추적이나 동작 메커니즘을 추적한다는 것은 매우 귀찮고 번거로운 작업이 됩니다.만들어지는 파이썬의 모든 파일에 해당 로그를 넣었다가 빼었다가, 배포의 오류를 만나는 상황까지 매우 번거로운 작업들이 끊임없이 반복되게 됩니다. 이런 상황들을 추적하기 위한 APM의 추적 기능들을 찾게 됩니다.또한, Python의 특징상 수학 알고리즘으로 구성된 API 중개인의 형태를 취할 경우에 DB에 대한 접근을 위한 ORM에서의 추적과 외부 웹 호출들이 뒤섞이게 되면서 오류 추적은 매우 짜증스러운 단계로 진화되게 됩니다.Python으로 백엔드 개발을 하게 되면만나게 되는 매우 짜증스러운 상황이죠.그래서, 와탭의 Python APM은 이 문제에 집중하기 위해서 와탭 고유의 문제 해결 방식을 그대로  아키텍처로 적용하여서 개발시에 편하고 빠르게 성능을 추적할 수 있도록 제작되었습니다. Python 백엔드 개발을 위한 최선의 방향을 제시합니다.Python개발자는 와탭의 APM을 설치하면 매우 손쉽게 웹 트랜잭션의 단계, 에러 추적, 클래스 추적, DB의 형태 및 Slow Query추적, 외부 호출 메커니즘의 구성 등을 설치 이후부터 빠르게 추적할 수 있으며, 개발자의 실수이거나 다른 외부 호출의 문제, DB와의 관계 등을 빠르게 잡아낼 수 있습니다.에러를 추적하기 위한 로그를 동작한다던지, 실환경시에 배포를 다시 한다던가 하는 귀찮은 작업을 모두 제거하는 것뿐만 아니라, 매우 통계적으로 의미 있는 와탭의 트랜잭션 추적 메커니즘을 사용할 수 있게 됩니다.파이썬을 기반으로 백엔드를 구성하는 곳이라면,와탭 APM은 매우 의미 있는 결과를 도출할 수 있습니다.와탭 Python의 세부적인 기능을 조금 더 상세하게 설명드리겠습니다.가장 먼저, 실시간 트랜잭션 모니터링!5초 주기로 트랜잭션을 수집하는 와탭의 방식은 서버의 부하를 최소화하면서 가장 의미 있는 데이터들을 수집하고 데이터 기반으로 오류와 트랜잭션을 빠르게 추적할 수 있게 합니다.파이썬 개발 시의 동작성을 체크하기 위한 와탭만의 고유의 진행 중인 트랜잭션 실시간 모니터링 기능인 아크 이퀄라이져와 동작된 웹 트랜잭션의 종료시간을 기준으로 시각화하여 동작된 트랜잭션의 상황을 한눈에 파악할 수 있습니다.와탭 Python APM위의 그림을 보면, Active Transaction으로 불리는 원형( 아크 이퀄라이져라 함 )으로 실제 동작중인 트랜잭션의 개수와 동작속도 등을 체크할 수 있으며, Hitmap을 통해서 종료된 트랜잭션의 속도를 시각화하여 볼 수 있습니다. 이 두 개의 시각화 만으로도 느린 트랜잭션을 추적 관리할 수 있습니다.Python 트랜잭션 추적 및 분석개발자는 단지 APM을 동작시켰을 뿐이지만, postgreSQL 데이터베이스에 연결하고 SQL문장을 주고받는 부분들을 하나의 시각화된 관점으로 나열해서 확인할 수 있습니다.각각의 동작 시간을 추적하는 것은 물론이고, 이 내용은 ORM으로 매핑된 상태에서도 SQL의 동작 순서대로 시각화되기 때문에 순서가 꼬이거나 문제가 발생되는 부분들을 손쉽게 찾아볼 수 있게 합니다.이외에도 와탭 APM( Java, Node, PHP 등의 모든 APM)에 기본적으로 제공되는 트랜잭션 추적 모듈 이외에도 사용자가 원하는 모듈 추적에 대한 기능들을 플러그인 형태로 정의할 수 있습니다. 더 복잡한 추적을 위해서 와탭의 고유기능을 추가적을 확대 사용이 가능합니다.WHATAP_HOME 의 plugin.json파일에 적절한 내용을 수정하여 특정 모듈의 데이터를 추적할 수 있습니다. 특정 모듈의 데이터를 추적하거나, 사용자 별로 원하는 모듈을 추적할 수 있습니다.*사용 안내:•[module_name]: 추적하고자 하는 대상의 모듈 명. import 하는 모듈 명 이기도 하다.•[class_name]: 추적하고자 하는 대상의 클래스 명. 없다면 ‘’(empty string)으로 사용한다.•[def_name]: 추적하고자 하는 대상이다.•args_indexes: 추적하고자 하는 대상의 아규먼트 인덱스. 여러 개일 경우 , 로 구분한다.•kwargs: 추적하고자 하는 대상의 키워드 명. 여러 개일 경우 , 로 구분한다.Plugin 기능 사용위의 예제에서는 Plugin과 SQL update문장의 순차적인 실행,세부 Plugin 설정에서 사용자의 모듈명, 추적 클래스 명, 추적대상과 아규먼트 인덱스, 키워드 등을 추적할 수 있습니다.*사용 예:plugin.json{"[module_name]": {      "class_name": "[class_name]",      "def_name": "[def_name]",      "args_indexes": ", ",      "kwargs": ", "},"httplib2": {      "class_name": "Http",      "def_name": "request",      "args_indexes": "1",      "kwargs": "method"},"faker.providers.address": {      "class_name": "Provider",      "def_name": "street_address",      "args_indexes": "",      "kwargs": ""}}두 번째, 데이터베이스를 매핑한 ORM과 SQL의 순서와 속도, Slow Query!매우 당연하게 파이썬을 기반으로 백엔드 개발을 할 경우에 데이터베이스를 사용하게 되며, 이에 대한 Slow Query와 관련된 추적하는 것이 개발자에게 필요하게 됩니다. 향후, RDS기반을 사용하게 되면 Query추적은 대부분의 데이터베이스 처리에 기본이 될 것입니다.현재 지원되고 있는 mysql / postgresql에 대하여 SQL Query, Fetch Count, SQL Query수행 시간을 수집합니다.Python개발 시에 RDBMS(관계형 데이터베이스 관리 시스템)를 선택하면 거의 항상 ORM(객체 관계 매핑) 라이브러리를 함께 사용하게 됩니다.특히, 파이썬에서는 이런 ORM라이브러리가 다양하고 사용하기 쉽기 때문에, 매우 흔하게 사용하고 있습니다.ORM의 장점으로는 쿼리를 생성하거나 추상화하는 대신, 데이터 베이스 시스템에 대한 접근을 쉽게 할 수 있는 장점이 있습니다. 다만, 이러한 장점 때문에 실제 만들어진 쿼리가 어떠하고 쿼리 수행 시간이 얼마나 걸리는지에 대해서는 추적이 어렵다는 점이 있습니다.이처럼, 파이썬의 특징상 ORM(객체 관계 매핑) 라이브러리를 사용할 경우에 추상화된 쿼리가 어떻게 동작하고, 실제 어떤 상황으로 발생 및 동작되는지를 한눈에 파악할 수 있게 합니다.ORM으로 매핑된 SQL의 순차적인 동작 상태 파악그리고, 세 번째. 외부 호출 추적파이썬 백엔드 개발 시에 사용되는 외부 호출(request/httplib2)등의 외부 호출과 관련된 호출 정보 및 수행 시간 등을 수집합니다.외부 호출을 사용하는 경우에는 각각의 호출에 대한 지연시간에 대해서 세밀하게 추적해야 하므로, 이와 관련된 에러와 지연시간 등을 추적하는 것은 매우 중요한 개발 시의 관점입니다.Python 외부 호출 추적마지막 중요 관점 네 번째는, 튜닝을 위한 다양한 프로파일 데이터의 제공을 이야기할 수 있습니다.와탭의 파이썬 에이전트는 위에서 나열되는 성능 저하를 위한 요소들의 전체적인 관점에서 수집하고 그 데이터들을 시각화할 수 있습니다.데이터베이스를 효율적으로 사용하고 있는지, 사용하는 ORM툴과 매핑과의 관계, 쿼리와 쿼리의 수행 시간과 상태에 대한 추적, 외부 호출시간과 각각의 지연되는 외부 호출과의 관계와 순서 등이 전체적으로 백엔드로 개발되는 Python의 성능 튜닝에 영향을 주게 되는 것이죠.그 이외에도 전체적으로 백엔드 서비스의 TPS, 응답 시간, 서비스 리소스 사용량과 어떤 에러가 발생되고 있는지를 알 수 있습니다.서비스 사용자가 사용하는 상세한 정보들을 프로파 일릉 함으로써 이들의 연관관계를 한분에 파악하게 해줍니다. 와탭에서 관리되는 프로파일 정보는 - 트랜잭션, SQL Query, 외부 HTTP호출, Error, User Agent, Client IP 등의 상관관계들입니다.그리고, 덤으로... Python이 설치 운영되는 전체적인 패키지의 버전을 한눈에 파악할 수 있는 것은 너무도 당연한 기능입니다.설치된 Python 패키지 확인그리고, 와탭의 DNA를 그대로 이어받은 APM이기 때문에, 기본적인 APM의 기능들을 대부분 담고 있습니다. 처음 와탭 APM을 접하시는 분들을 위해서 간단하게 설명드리면 다음과 같습니다.CUBE 메뉴는 시간을 기점으로 와탭 Python APM이 설치된 이후부터 현재까지의 모든 상황들을 추적 관찰할 수 있습니다. 주말에 오류 간 난 상황이라던지, 특정 오류의 발생 시점을 알고 있는 경우에 빠르게 해당 문제가 발생한 위치나 SQL 등을 추적할 수 있습니다.상세한 일간, 주간, 월간 리포트나 MAU 등을 추적할 수 있는 리포트 기능들은 와탭만이 가지고 있는 장점에 해당됩니다.Python으로 백엔드 웹서비스를 개발하고 계시다면, WHATAP Python APM은 개발과 운용을 매우 풍요롭고 빠르게 해줍니다.파이썬 백엔드 서비스 개발자라면 와탭 APM!
조회수 1002

안드로이드 색상 투명도

제 깃헙블로그 https://heelog.github.io/about/ 에서 동시에 포스팅을 진행하고 있습니다.개발 관련 글을 보기에는 블로그를 통하시는 것이 더 좋습니다!안드로이드에서 색상을 표현할 때는 #AARRGGBB 형태로 표현한다. 앞의 AA 자리에 16진수를 이용하여 투명도를 표현해줄 수 있다. 범위는 0~255이다.0%~100% 투명도 값  100% — FF99% — FC98% — FA97% — F796% — F595% — F294% — F093% — ED92% — EB91% — E890% — E689% — E388% — E087% — DE86% — DB85% — D984% — D683% — D482% — D181% — CF80% — CC79% — C978% — C777% — C476% — C275% — BF74% — BD73% — BA72% — B871% — B570% — B369% — B068% — AD67% — AB66% — A865% — A664% — A363% — A162% — 9E61% — 9C60% — 9959% — 9657% — 9456% — 9156% — 8F55% — 8C54% — 8A53% — 8752% — 8551% — 8250% — 8049% — 7D48% — 7A47% — 7846% — 7545% — 7344% — 7043% — 6E42% — 6B41% — 6940% — 6639% — 6338% — 6137% — 5E36% — 5C35% — 5934% — 5733% — 5432% — 5231% — 4F30% — 4D28% — 4A28% — 4727% — 4526% — 4225% — 4024% — 3D23% — 3B22% — 3821% — 3620% — 3319% — 3018% — 2E17% — 2B16% — 2915% — 2614% — 2413% — 2112% — 1F11% — 1C10% — 1A9% — 178% — 147% — 126% — 0F5% — 0D4% — 0A3% — 082% — 051% — 030% — 00참고한 블로그: 커피한잔의 여유와 코딩#트레바리 #개발자 #안드로이드 #앱개발 #인사이트 #경험공유 #꿀팁
조회수 4594

Elasticsearch로 느린 쿼리 분석하기

응당 인덱스가 있으리라 생각한 칼럼에 인덱스가 없고 인덱스를 걸자마자 응답속도가 평균 10배 가까이 좋아지는 모습을 지켜보니 여러 생각이 들더라. 통계와 지표가 제공되는 곳은 주기적으로 검토하고 문제가 커지기 전에 손을 쓰는데 그렇지 않은 곳이 문제이다. 주기적으로 Slow query 로그를 훑어볼 수는 있다. 하지만 특정 시점에 일부 로그만 훑어봐서는 엉뚱한 문제를 해결하기 일쑤다. 예를 들어 1초짜리 쿼리보다 10초짜리 쿼리가 문제라고 생각하기 쉽지만 이 1초짜리 쿼리를 10초짜리 쿼리보다 1000배 많이 실행한다면 이야기가 달라진다. 요는 느린 쿼리를 지속적으로 수집하고 통계를 낼 필요가 있다는 것이다.이러한 모니터링 도구를 어떻게 구현할까? 우리 손에 있는 도구를 검토하는 일부터 시작했다.통계분석은 MySQL 또는 Elasticsearch 를 쓰면 된다.Elasticsearch를 쓴다면 Kibana를 이용해 시각화하기 편하다.느린 쿼리 로그를 Elasticsearch에 보내는 일은 Fluentd를 쓰면 된다.그러니까 Fluentd, Elasticsearch, Kibana 조합이라면 데이터를 눈으로 보고 문제를 해결하기 좋을 것이다. 그렇다면 어떻게 구현할 것인가?우선 RDS에서 느린 쿼리를 뽑아서 Fluentd에 보내는 방법을 찾아야 한다.Fluentd를 이용해 Elasticsearch에 데이터를 보내는 건 쉬우니 대시보드만 잘 구성하면 끝!문제는 RDS에서 느린 쿼리를 뽑아서 Fluentd에 보내는 것인데 크게 두 가지 방법이 있다. RDS 설정에 따라 느린 쿼리 로그를 테이블 또는 파일에 저장할 수 있는데 이에 따라 구체적인 구현방법이 달라진다. 하지만 기본적으로는 동일한 과정을 거치는데 대충 이런 식이다.느린 쿼리 로그를 읽는다.같은 쿼리라도 매개변수 값이 다를 수 있으므로 mysql_slow_log_parser 또는 pt-query-digest 같은 도구를 사용해 쿼리를 일반화한다.Fluentd를 통해 해당 로그를 ES로 보낸다.새로 추가된 로그만 읽어서 다시 ES로 보낸다.이와 관련해서는 AWS RDS Mysql SlowQuery monitoring on Kibana using Logstash 등의 글이 잘 설명한다.다행히 테이블에 저장한 로그를 읽어들이는 Fluentd 플러그인을 구하기는 쉽다. 변형체가 많은데 대부분은 kenjiskywalker/fluent-plugin-rds-slowlog에서 파생됐다. 파일에 저장한 로그의 경우는 in_rds_mysqlslowlog_stream.rb를 써서 처리하면 된다. 우리는 테이블에 저장하기 때문에 전자를 선택했다.이쯤 조사를 마치고 나니 진행방향은 매우 명확하다. 적당히 잘 만든 Fluentd 플러그인을 골라서 적용한 후에 ES에 대시보드를 만들면 된다. 물론 우리는 Kubernetes 위에 모니터링 도구를 띄워야 하니 Dockerize할 필요도 있다. 이쯤에서 또다시 구글링을 하니 무시무시한 게 나온다. inokappa/rds-slowquery-log-demo는 방금 설명한 모든 과정을 하나로 정리해서 제공한다. Docker로 만든 Fluentd와 ES 대시보드 설정을 한데 묶어놓았다. 거기에 파일 로그, 테이블 로그 둘 다 예제로 제공한다. 덕분에 일이 쉽게 끝날 줄 알았다. 하지만!개발한지 꽤 시간이 지난 지라 최신 버전의 Fluentd와 ES에서 계속 문제를 일으켰다. 문제점에 대해 구구절절 설명할 생각은 없고 DailyHotel/rds-slowquery-log-demo를 참고해서 적용하면 된다는 점만 이야기하고자 한다. 일어로 된 README 파일은 구글 번역기를 돌리면 적당히 읽을만해진다.삽질을 약간만 하면 아래와 같이 간지!나는 대시보드를 얻을 수 있으니 해볼만 할 것이다.참! DailyHotel/rds-slowquery-log-demo는 테이블 로그인 경우만 테스트했으니 파일 로그를 사용하는 경우라면 이 점을 주의해야 한다.더 읽을거리Collecting and Analying Slow Query Logs for MySQLRDS(MySQL) のスロークエリを EFK スタック + Docker で出来るだけ手軽に可視化する考察(2)〜 log_output: FILE の場合 〜#데일리 #데일리호텔 #개발 #개발자 #개발팀 #Elasticsearch #엘라스틱서치 #꿀팁 #도입후기 #일지
조회수 1184

Event-Driven Programming

Overview마이크로 서비스 사이의 결합도를 낮추고 비동기적인 문제들을 처리할 때는 Event-driven 아키텍쳐가 유용합니다. 이번 글에서는 AWS에서 제공하는 SNS Topic을 이용해 Event-Driven을 알아보겠습니다. Event-Driven Programming프로그램의 제어 흐름이 이벤트의 발생에 의해 결정되는 컴퓨터 프로그래밍 패러다임입니다. publish/subscribe (이하 pub/sub)메시징서버리스 및 MSA에서 안정성 및 확장성을 높이기 위하여 사용되는 비동기 서비스 통신 방법입니다. 게시된 메시지를 다른 시스템에 비동기적으로 전달하고, Topic을 구독하는 모든 구독자는 모든 메시지를 받을 수 있습니다. 특히 게시자는 누가 구독하고 있는지 알지 않아도 되고, 구독자도 메시지의 출처를 알 필요는 없습니다. pub/sub 메시징 기본 / 출처: AWS Compute BlogAmazon SNS Topicpub/sub 방식의 메시징 서비스입니다. AWS의 여러 서비스들이 SNS에 이벤트를 게시할 수 있습니다. SNS Event Publishers / 출처: AWS Compute Blog위의 그림과 같이 구독자는 게시자 서비스에서 트리거된 이벤트에 응답해 필요한 작업을 진행합니다. 예시로 Elastic Transcoder 서비스에서의 Topic을 활용해보겠습니다. 네 가지의 순서를 거칩니다.1. SNS 토픽 생성2. Elastic Transcoder 등록Optional 항목인 Notification 영역에서 상태별 이벤트를 설정할 수 있습니다. On Completion Event에 위에서 생성한 Topic을 선택해 이벤트를 전달받도록 설정합니다. 3. SNS Topic에 구독자로 등록트랜스 코딩이 완료 후 처리할 프로세스를 가진 Lambda 함수 생성하여 위에서 생성한 SNS Topic에 구독자로 등록합니다. 현재 SNS Topic에서 제공하는 프로토콜은 HTTP, HTTPS, Email, Email-JSON, Amazon SQS, Application, AWS Lambda, SMS가 있습니다.4. 서비스 간 이벤트 전달출처: AWS Compute BlogSNS Topic으로 이벤트를 제공하는 AWS 서비스 중 하나를 살펴봤습니다. 이를 이용하면 마이크로 서비스 간에 이벤트를 전달하고 서비스의 분리 및 확장에 유용하게 사용할 수 있습니다.Conclusion오늘은 SNS Topic을 이용한 Event-Driven을 알아봤습니다. 다음 글에서는 마이크로 서비스에서 사용할 수 있는 AWS 서비스들을 다뤄보겠습니다.참고Event-Driven Computing with Amazon SNS and AWS Compute, Storage, Database, and Networking Services글이상근 팀장 | R&D 개발1팀[email protected]브랜디, 오직 예쁜 옷만#브랜디 #개발문화 #개발팀 #업무환경 #인사이트 #경험공유
조회수 1392

[H2W@NL] 전문가들의 고정밀 시너지, 하이브리드 HD 매핑

네이버랩스의 인재상은 passionate self-motivated team player입니다. 어쩌면 '자기주도적 팀플레이어'라는 말은 형용모순(形容矛盾)일 지도 모릅니다. 하지만 우린 계속 시도했고, 문화는 계속 쌓여갑니다. 다양한 분야의 전문가들이 경계없이 협력하고 스스로 결정하며 함께 도전하는 곳의 이야기를 전합니다. How to work at NAVER LABSH2W@NL 시리즈 전체보기지난해 11월, 네이버랩스는 국내 기업 중 최초로 도로 HD맵 데이터셋을 무상 배포했습니다. 수많은 국내 자율주행 연구자들을 위해서입니다. 그렇다면, 왜 자율주행 연구에 HD맵은 중요할까요? 안전하고 효과적인 자율주행을 위해서입니다. 센서 데이터와 HD맵을 연동하면 고층 빌딩이 즐비한 도심에서도 현재 위치를 끊김없이 정확하게 인식할 수 있도록 해주고, 복잡하게 얽혀있는 도로 구조를 광범위하게 파악해 효과적인 경로 계획을 세울 수 있으며, 신호등/횡단보도 등의 위치를 HD맵을 통해 미리 확인해 실시간 인지 정확도를 높일 수도 있습니다. 그래서 네이버랩스는 자율주행 연구 시작 시점부터 HD맵 솔루션을 함께 연구해 왔습니다. 그 결과가 하이브리드 HD 매핑입니다. 항공사진과 MMS 데이터를 융합해 고정밀 지도를 만드는 기술입니다. 다른 어디에서도 시도하지 못했던, 가장 독창적인 방식의 매핑 솔루션은 어떻게 개발되었을까요? 그 주역들의 이야기를 들어보았습니다.Q. 왜 HD맵 기술을 개발하나요?HD맵은 도로 자율주행을 위한 시작(김형준|시스템 소프트웨어 개발) 자율주행 시대가 온다고 합니다. 그렇다면, 반드시 그보다 먼저 필요한 것은 HD맵입니다. 자율주행 차량이 도로를 안전하게 주행하려면, 차선 단위의 아주 정밀한 정보가 필요하기 때문입니다. 보통은 MMS (Mobile Mapping System) 차량이 일일이 돌아다니며 수집한 도로 데이터로 HD맵을 제작하는 것이 일반적이지만, 이 방식은 소요되는 시간과 비용이 많습니다. 지역이 광범위해지면 더 많은 리소스가 필요하고요. 우리는 그걸 획기적으로 줄일 수 있는 방법을 찾고 싶었습니다. 정확도는 유지하되, 도시 단위의 넓은 지역을 더 빠르고 효율적으로 제작하는 솔루션을 찾았습니다. 그 결과가 네이버랩스의 하이브리드 HD 매핑 기술입니다. 항공 사진을 통해 대규모 지역의 도로의 레이아웃과 건물 정보 등을 얻고, 이 위에 자체 MMS 차량인 R1으로 취득한 데이터를 정합해서 HD맵을 만듭니다. R1이 최소한만 주행해도 HD맵을 제작할 수 있기 때문에, 소요되는 시간과 비용을 획기적으로 줄일 수 있습니다.(전준호|비주얼 피처맵 개발) 이렇게 완성된 HD맵에는 도로 자율주행에 필수적인 고정밀 정보들이 담겨 있습니다. 도로의 구조 정보인 로드 레이아웃 맵(Road Layout Map), 기하 정보를 가진 포인트 클라우드 맵(Point Cloud Map), 시각 정보를 가진 비주얼 피처 맵(Visual Feature Map) 등이죠.(신용호|센서 캘리브레이션) 우리가 하이브리드 HD 매핑이란 새로운 방식을 고안하고 완성할 수 있었던 건, 그 동안 지속적으로 개발해 온 자율주행 기술과 항공 사진 기반의 지도 생성 기술을 모두 내재화하고 있었기 때문이죠.도시 규모의 HD맵을 효율적으로 제작할 수 있는 독자 솔루션(이진한|PM/소프트웨어 개발) 사실 자율주행 기술을 연구하는 회사들은 많습니다. 그런데 독자적인 HD 매핑 기술까지 보유한 회사는 의외로 많지 않아요. 네이버랩스도 처음엔 그랬어요. 자율주행 프로젝트가 시작된 2016년 무렵엔 자체 HD 매핑 기술이 없다는 점이 아쉬웠어요. 센서만으로는 얻기 힘든 정보들을 미리 담아둘 수 있는 그릇이 HD맵인데, 바로 그 정보들이 자율주행의 성능을 높이는데 큰 역할을 하거든요. 결국 이 그릇을 만드는 방법을 내재화했죠. 이제는 도시 규모의 HD맵을 효율적으로 제작할 수 있는 독자 솔루션을 갖췄습니다. 실제로 이 결과물을 Localization에 바로 활용하여 자율주행 기술도 함께 고도화하고 있습니다.Q. 어떤 협업을 통해 개발되었나요?아웃풋이 바로 새로운 인풋이 되는(이진한|PM/소프트웨어 개발) 하이브리드 HD 매핑은 여러 분야의 전문가들이 함께 했습니다. 한 프로젝트의 결과물이 다른 프로젝트의 입력으로 연결되는 구조라고 할 수 있겠네요. 예를 들어 R1 하드웨어 장비 개발 프로젝트는 Sensor Calibration 프로젝트로 이어지고, 항공 매핑을 통해 만들어진 로드 레이아웃 데이터에 MMS 데이터를 연결하고… 이렇게 유기적인 의존 관계로 진행되었습니다.(이웅희|센서 데이터 툴 개발) 자체 개발한 MMS 차량인 R1에는 다수의 카메라, 라이다, GPS, 자이로센서 등 많은 센서들이 탑재되어 있어요. 이러한 개별 센서들에 대한 드라이버 개발은 물론 전체 센서 데이터가 동시에 들어왔을 때 유실 없이 저장할 수 있는 시스템 개발, 그리고 운용 소프트웨어 개발이 필요했습니다.(신용호|센서 캘리브레이션) R1이 수집된 데이터를 융합하기 위해서 반드시 필요한 과정이 있습니다. 캘리브레이션입니다. 각 센서간에는 상대적인 위치와 방향 등의 차이가 발생하는데, 캘리브레이션을 통해 정확하게 매칭을 시켜야 하죠. 그렇지 않으면 수집한 데이터들을 제대로 사용할 수가 없습니다.하늘과 도로에서 획득한 데이터를 융합하여 도시 규모의 HD맵 생성(김진석|항공 매핑) R1이 지상을 담당한다면, 저희는 하늘에서 찍은 정보를 활용합니다. 항공 사진을 통해 정확도를 획기적으로 높이는 방식을 개발했습니다. 항공 사진에서 8cm 해상도로 왜곡이 제거된 연직 정사영상(TrueOrtho)을 생성한 후, 도로 영역의 2D/3D 로드 레이아웃을 생성합니다. 여기에 R1이 수집한 포인트 클라우드 데이터를 정합하면, 대규모 지역의 HD맵을 빠르고 효율적으로 만들 수 있게 됩니다.(임준택|라이다 피처맵 개발) 이처럼 R1이 도로의 포인트 클라우드를, 항공기가 대규모 지역의 로드 레이아웃을 스캔해 결합하는 방식은 아주 새로운 솔루션입니다. 물론 그냥 붙인다고 HD맵이 바로 나오는 것은 아닙니다. 스캔 데이터에서 자동차나 사람같이 불필요한 부분을 지우는 딥러닝 모델을 만들고, HD맵을 사용할 차량이나 로봇을 위한 특징점을 추출하는 과정도 필수적입니다.서로 다른 분야의 전문가, 하나의 팀(전준호|비주얼 피처맵 개발) HD맵을 이루는 요소들, 즉 Road Layout Map/Point Cloud Map/Visual Feature Map 등의 구축 알고리즘을 각기 개발해, 이 데이터들을 잘 포함하고 있는 HD맵을 제작하는 거죠. 이렇듯 많은 팀의 협력으로 완성한 매핑 솔루션입니다. 항공 사진의 정합과 인식, MMS 차량의 데이터 수집을 위한 장비와 센서 시스템 구축, GPS와 LiDAR 데이터를 이용한 위치 인식 기술, 시각 정보 추출을 위한 딥러닝 기술 등 서로 다른 전문가가 하나의 팀으로 모여있어요. 같은 목적을 갖고 밀접하게 협업하기에 더 높은 수준의 연구와 개발이 가능한 것 같습니다.“결과도 중요하죠. 하지만 문제를 같이 정의하고, 함께 해법을 찾아가는 과정은 더 중요한 것 같아요. 그래야 좋은 결과가 이어질 수 있으니까요.”(김형준|시스템 소프트웨어 개발) 다양한 분야의 전문가들이 모여 유기적인 협업이 언제든 가능하다는 것은 프로젝트에서 난항을 겪을 때 큰 힘을 발휘합니다. 예전에, 데이터 취득 시스템의 안정성에 문제가 생긴 적이 있어요. 그때 하드웨어 엔지니어와 소프트웨어 엔지니어들이 모두 모여 동시에 검토를 했습니다. 필드를 돌며 문제 발생 시점의 상황을 함께 체크하고, 그 중 기구 엔지니어 분들이 원인을 찾아 문제를 해결했습니다.(김상진|하드웨어 설계) 저도 그때가 기억나요. 차량 진동으로 인한 간헐적인 회로 단락이 원인이었죠. 짧은 시간에 가장 정확한 답을 찾기 위해 필요한 것은, 역시 유기적인 팀웍인 것 같아요.(신용호|센서 캘리브레이션) 팀이 없는 것처럼 협업이 잘 된다는 점도 자랑하고 싶어요. 함께 잘하기 위해서라는 목표만으로 일에 몰입할 수 있다는 건 정말 좋은 경험이죠.Q. 경과, 그리고 목표는?서울시 2,000km 로드 레이아웃 지도 구축(김진석|항공 매핑) 서울시 4차선 이상 도로 2,000km에 대한 로드 레이아웃 구축을 완료했습니다. 자율주행에 필요한 도로 구조 정보(차선, 중앙선, 정지선, 좌회전 등의 노면표시)를 정밀한 벡터 데이터 형식으로 변환했습니다. 서울시만큼 큰 대도시 규모의 매핑이란 관점에서 보자면, 국내에서 유일한 기술입니다.(김형준|시스템 소프트웨어 개발) 하이브리드 HD 매핑의 자체 프로세스가 정립되면서, 예전과 비교해 최소한의 작업으로 원하는 지역의 HD맵을 생성할 수 있게 되었습니다. 무상 공개한 판교 및 상암 지역 HD맵도 이 결과물 중 하나죠.(이진한|PM/소프트웨어 개발) 상암/판교 지역의 HD맵 무상 배포를 DEVIEW에서 발표했을 때가 정말 보람되었던 것 같아요. 국내에서 자율주행을 연구하고 있는 많은 기관에서 데이터셋 신청을 해주셨어요. 저희의 솔루션으로 만든 HD맵이 국내 자율주행 기술 고도화에 도움이 될 수 있었으면 좋겠습니다.(전준호|비주얼 피처맵 개발) 네이버랩스의 HD맵은 도로 위의 정밀 위치 인식을 최종 목표로 하고 있습니다. 예를 들어 Visual Feature Map의 경우 위치 인식에 필요한 최소한의 시각 정보와 기하 정보를 Descriptor 형태로 경량화 했기 때문에, 대규모 도심 지역의 데이터도 용량이 아주 작습니다. 이러한 최적화를 계속할 계획이고요.미래 모빌리티 세상으로 한 걸음 더(김상진|하드웨어 설계) 매핑 시스템 고도화의 목표는 결국 신뢰성 높은 지도를 만드는 것에 있습니다. 하드웨어 시스템의 신뢰성/유연성/운용성을 빠르게 개선하고, 이를 더욱 저비용으로 구현할 수 있도록 개발을 지속하고 있어요. 이런 연구들의 결과가 모이고, 이러한 고정밀 데이터가 쌓이면, 우리가 상상하고 있는 미래 모빌리티 세상을 더욱 앞당길 수 있다고 생각합니다.

기업문화 엿볼 때, 더팀스

로그인

/