스토리 홈

인터뷰

피드

뉴스

조회수 963

HyperCut으로 인물사진 필터를 만들었습니다

얼마전 하이퍼커넥트의 아이디어 제안 채널에서 나온 이야기입니다.mel 은 사업그룹의 터키지역 담당 팀에 있는 친구인데, 꾸준히 좋은 제안과 아이디어를 주는 훌륭한 동료입니다. 이번에는 최근 여러 스마트폰이나 사진 앱들에서 나타나기 시작한 인물사진 모드 를 아자르에서도 지원하는게 좋겠다는 제안이었습니다.스마트폰이 자체 기능으로 인물사진 필터를 제공하는 경우는 보통 듀얼 카메라를 사용해 인물 외의 배경을 흐릿하게 만들어 심도를 표현합니다. 하지만 모두가 듀얼 카메라를 탑재한 스마트폰을 쓰는 것은 아니기 때문에, 이런 인물사진 모드를 소프트웨어적으로 구현하는 앱들도 존재합니다. mel 이 보여준 링크의 인스타그램도 그렇게 구현했네요.인물사진 모드를 소프트웨어적으로 구현하려면, 영상에서 얼굴을 포함한 사람을 배경으로부터 정확히 분리해 내는 기술이 필요합니다. 그리고 사진을 찍을 때에 실시간으로 프리뷰를 보아야 할테니까 이것을 실시간으로 처리할 수 있을 정도의 성능도 필요하구요.하이퍼커넥트에서는 머신러닝, 특히 영상과 이미지를 다루는 분야에 대해 지속적으로 투자와 연구를 해 왔습니다. 영상에서 인물을 분리해내는 문제는 크게 Image Segmentation 의 범주에 속합니다. 좀 더 직접적으로 Portrait segmentation 이라고 부를 수도 있습니다. 이를 잘 하기 위해서 하이퍼커넥트에서는 자체적인 학습 데이터를 만드는 것부터 시작하여 기술 개발을 지속적으로 추진해 왔고, 그 결과 Machine Learning 팀에서 이미 실시간으로 얼굴과 배경을 분리해내는 - HyperCut - 이라는 기술을 확보한 상태입니다. 아직 실제 서비스에 탑재되진 않았지만 이미 하이퍼커넥트의 주요 서비스인 아자르의 개발 버전에서는 HyperCut을 응용한 여러가지 이펙트를 사용할 수가 있습니다. 그리고, 그 중에 인물사진 모드 필터도 이미 있습니다.mel 의 제안이 있던 날 오후 아이디어 제안 채널에 이런 답이 달렸습니다.모델이 되어 주신 분은 하이퍼커넥트의 CTO 인 ken 이네요. 아자르 개발 버전에서 HyperCut 을 응용한 인물사진모드 필터를 사용하고 찍은 사진입니다. 아자르의 저장하기 기능을 사용했더니 UI 없이 오른쪽 아래에 아자르 로고만 남게 되었네요. 아직 실서비스에는 포함되지 않았지만, 최적화와 튜닝 과정을 거쳐 조만간 많은 사용자들이 HyperCut 을 사용한 이펙트를 쓸 수 있게 될 예정입니다.#하이퍼커넥트 #개발 #개발자 #아이디어 #아이디에이션 #구체화 #협업 #팀워크 #팀플레이
조회수 1115

개발자의 경력관리란?

경력이 아닌 업력이 되는 단계에 이르러야 가능한 것 아닌가 합니다.대부분의 경력은 '어느 회사의 누구'라는 표현에서 만들어진 것이 아닙니다.진정한 경력의 결과는 '자신의 이름'이 곧 브랜드화 되는 것입니다.매우 당연하게,하루 이틀, 한 두해 한다고 해서 얻어지는 것이 아닙니다."10년 경력!"10년 이상 한 분야나 하나의 도메인, 하나의 테크, 하나의 경력, 하나의 경험을 꾸준하게 파고들었을 때에 얻어지고, 그러는 경험속에서 인사이트, 통찰력이 생기게 됩니다.물론. 그래서, 20대에도 명성을 얻을 수 있는 '경력관리'가 가능하다고 이야기합니다.(실제 얻은 사람을 많이 봤습니다. 그들은 10대에 시작했죠. )회사의 테두리 내에서 얻을 수 있는 '경력'은 '경험'일뿐입니다.자신의 이름을 중심으로 기술할 수 있을 때에 '경력'이라고 이야기할 수 있습니다.개발자라면...글을 써서도 얻을 수 있고,강연을 해서도 얻을 수 있고,GitHub에 오픈소스를 공개하면서도 얻을 수 있습니다.현재 30대와 그 이전의 개발자라면...10대와 20대도 똑같습니다.40대, 50대 이후를 준비하세요.반복적인 일, 똑같은 일, 회사의 프로세스의 하나인 일만 하는 '사람'이라면...그냥, 그 회사의 톱니바퀴가 되는 것입니다.대부분 '경력관리'가 잘 안됩니다.앞으로 50대 이후에도 '브랜드'를 얻을 사람이 되려면...자신의 '경력'관리를 잘 해야 얻을 수 있습니다.나중에 닭 튀기거나 치킨 배달할 것이 아니라면...관리를 잘해야 합니다.경력관리가 가능하려면 어떤 회사를 찾아야 할까요.다음을 기억하세요.1. 구루급 개발자가 있는 회사를 찾으세요.2. 자신이 주도적으로 무언가를 만들 수 있는 권한과 책임을 줄 수 있는 회사를 찾으세요.3. 커뮤니티나 외부 강연, 외부 오픈소스 개발 행사에 적극 참여할 수 있는 기회를 주는 회사를 찾으세요.4. 반복적인 업무와 정체된 마켓에서만 반복적으로 서비스를 하는 회사는 회피하세요.5. 우리 도메인은 원래 이래, 이 일은 원래 이래... 이런 식으로 이야기하는 '상급자'가 있는 회사를 피하세요.6. 쉽게 설명할 수 있도록 준비하고, 리뷰를 할 수 있는 기회와 시간이 주어지는 회사를 찾으세요.그리고, 마지막으로...비전은 누가 주거나 만들어 주지 않습니다.결국, 자기 자신이 찾아야 하는데...이것도, 주변에 이야기가 통하는 '구루급 개발자'가 있어야 그나마 방향성을 찾기 좋습니다.혼자 고민하거나,주변에 비슷한 사람들끼리 고민해봐야 답이 안 나옵니다.꼭, 기억하세요!'구루급 개발자'와 상의하세요.그분들은 실패와 성공, 포기와 단념, 선택과 집중에 대해서 알고 있답니다.퇴근시간이라면..구루급 개발자에게 치맥 한잔 하자고 하세요!
조회수 1859

Tips for building fast portrait segmentation network with TensorFlow Lite

PrefaceDeep learning has led to a series of breakthroughs in many areas. However, successful deep learning models often require significant amounts of computational resources, memory and power. Deploying efficient deep learning models on mobile devices became the main technological challenge for many mobile tech companies.Hyperconnect developed a mobile app named Azar which has a large fan base all over the world. Recently, Machine Learning Team has been focusing on developing mobile deep learning technologies which can boost user experience in Azar app. Below, you can see a demo video of our image segmentation technology (HyperCut) running on Samsung Galaxy J7. Our benchmark target is a real-time (>= 30 fps) inference on Galaxy J7 (Exynos 7580 CPU, 1.5 GHz) using only a single core.Figure 1. Our network runs fast on mobile devices, achieving 6 ms of single inference on Pixel 1 and 28 ms on Samsung Galaxy J7. Full length video. There are several approaches to achieve fast inference speed on mobile device. 8-bit quantization is one of the popular approaches that meet our speed-accuracy requirement. We use TensorFlow Lite as our main framework for mobile inference. TensorFlow Lite supports SIMD optimized operations for 8-bit quantized weights and activations. However, TensorFlow Lite is still in pre-alpha (developer preview) stage and lacks many features. In order to achive our goal, we had to do the following:Understand details of TensorFlow and Tensorflow Lite implementation.Design our own neural network that can fully utilize optimized kernels of TensorFlow Lite. (Refer to 1, 2 and 3)Modify TOCO: TensorFlow Lite Optimizing Converter to correctly convert unsupported layers. (Refer to 4)Accelerate several quantized-layers with SIMD optimized code. (Refer to 5 and 6)We are willing to share our trials and errors in this post and we hope that readers will enjoy mobile deep learning world :)1) Why is depthwise separable layer fast in Tensorflow Lite ?Implementing low-level programs requires a bit different ideas and approaches than usual. We should be aware that especially on mobile devices using cache memory is important for fast inference.Figure 2. Memory access requires much more energy (640 pJ) than addition or multiplication.Accessing cache memory (8 pJ) is much cheaper than using the main memory (table courtesy of Ardavan Pedram) In order to get insight into how intrinsics instructions are implemented in Tensorflow Lite, we had to analyze some implementations including depthwise separable convolution with 3x3 kernelsBelow we describe some of the main optimization techniques that are used for building lightweight and faster programs.Loop UnrollingCan you spot the difference between the following two code fragments?for (int i = 0; i < 32; i++) { x[i] = 1; if (i%4 == 3) x[i] = 3; } for (int i = 0; i < 8; i++) { x[4*i ] = 1; x[4*i+1] = 1; x[4*i+2] = 1; x[4*i+3] = 3; } The former way is what we usually write, and the latter is loop-unrolled version of former one. Even though unrolling loops are discouraged from the perspective of software design and development due to severe redundancy, with low-level architecture this kind of unrolling has non-negligible benefits. In the example described above, the unrolled version avoids examining 24 conditional statements in for loop, along with neglecting 32 conditional statements of if.Furthermore, with careful implementation, these advantages can be magnified with the aid of SIMD architecture. Nowadays some compilers have options which automatically unroll some repetitive statements, yet they are unable to deal with complex loops.Separate implementation for each caseConvolution layer can take several parameters. For example, in depthwise separable layer, we can have many combinations with different parameters (depth_multiplier x stride x rate x kernel_size). Rather than writing single program available to deal with every case, in low-level architectures, writing number of case-specific implementations is preferred. The main rationale is that we need to fully utilize the special properties for each case. For convolution operation, naive implementation with several for loops can deal with arbitrary kernel size and strides, however this kind of implementation might be slow. Instead, one can concentrate on small set of actually used cases (e.g. 1x1 convolution with stride 1, 3x3 convolution with stride 2 and others) and fully consider the structure of every subproblem.For example, in TensorFlow Lite there is a kernel-optimized implementation of depthwise convolution, targeted at 3x3 kernel size:template <int kFixedOutputY, int kFixedOutputX, int kFixedStrideWidth, int kFixedStrideHeight> struct ConvKernel3x3FilterDepth8 {}; Tensorflow Lite further specifies following 16 cases with different strides, width and height of outputs for its internal implementation:template <> struct ConvKernel3x3FilterDepth8<8, 8, 1, 1> { ... } template <> struct ConvKernel3x3FilterDepth8<4, 4, 1, 1> { ... } template <> struct ConvKernel3x3FilterDepth8<4, 2, 1, 1> { ... } template <> struct ConvKernel3x3FilterDepth8<4, 1, 1, 1> { ... } template <> struct ConvKernel3x3FilterDepth8<2, 2, 1, 1> { ... } template <> struct ConvKernel3x3FilterDepth8<2, 4, 1, 1> { ... } template <> struct ConvKernel3x3FilterDepth8<1, 4, 1, 1> { ... } template <> struct ConvKernel3x3FilterDepth8<2, 1, 1, 1> { ... } template <> struct ConvKernel3x3FilterDepth8<4, 2, 2, 2> { ... } template <> struct ConvKernel3x3FilterDepth8<4, 4, 2, 2> { ... } template <> struct ConvKernel3x3FilterDepth8<4, 1, 2, 2> { ... } template <> struct ConvKernel3x3FilterDepth8<2, 2, 2, 2> { ... } template <> struct ConvKernel3x3FilterDepth8<2, 4, 2, 2> { ... } template <> struct ConvKernel3x3FilterDepth8<2, 1, 2, 2> { ... } template <> struct ConvKernel3x3FilterDepth8<1, 2, 2, 2> { ... } template <> struct ConvKernel3x3FilterDepth8<1, 4, 2, 2> { ... } Smart Memory Access PatternSince low-level programs are executed many times in repetitive fashion, minimizing duplicated memory access for both input and output is necessary. If we use SIMD architecture, we can load nearby elements together at once (Data Parallelism) and in order to reduce duplicated read memory access, we can traverse the input array by means of a snake-path.Figure 3. Memory access pattern for 8x8 output and unit stride, implemented in Tensorflow Lite's depthwise 3x3 convolution. The next example which is targeted to be used in much smaller 4x1 output block also demonstrates how to reuse preloaded variables efficiently. Note that the stored location does not change for variables which are loaded in previous stage (in the following figure, bold variables are reused):Figure 4. Memory access pattern for 4x1 output and stride 2, implemented in Tensorflow Lite's depthwise 3x3 convolution. 2) Be aware of using atrous depthwise convolutionAtrous (dilated) convolution is known to be useful to achieve better result for image segmentation[1]. We also decided to use atrous depthwise convolution in our network. One day, we tried to set stride for atrous depthwise convolution to make it accelerate computation, however we failed, because the layer usage in TensorFlow (≤ 1.8) is constrained.In Tensorflow documentation of tf.nn.depthwise_conv2d (slim.depthwise_conv2d also wraps this function), you can find this explanation of rate parameter.rate: 1-D of size 2. The dilation rate in which we sample input values across the height and width dimensions in atrous convolution. If it is greater than 1, then all values of strides must be 1.Even though TensorFlow doesn’t support strided atrous function, it doesn’t raise any error if you set rate > 1 and stride > 1. <!-- The output of layer doesn't seem to be wrong. -->>>> import tensorflow as tf >>> tf.enable_eager_execution() >>> input_tensor = tf.constant(list(range(64)), shape=[1, 8, 8, 1], dtype=tf.float32) >>> filter_tensor = tf.constant(list(range(1, 10)), shape=[3, 3, 1, 1], dtype=tf.float32) >>> print(tf.nn.depthwise_conv2d(input_tensor, filter_tensor, strides=[1, 2, 2, 1], padding="VALID", rate=[2, 2])) tf.Tensor( [[[[ 302.] [ 330.] [ 548.] [ 587.]] [[ 526.] [ 554.] [ 860.] [ 899.]] [[1284.] [1317.] [1920.] [1965.]] [[1548.] [1581.] [2280.] [2325.]]]], shape=(1, 4, 4, 1), dtype=float32) >>> 0 * 5 + 2 * 6 + 16 * 8 + 9 * 18 # The value in (0, 0) is correct 302 >>> 0 * 4 + 2 * 5 + 4 * 6 + 16 * 7 + 18 * 8 + 20 * 9 # But, the value in (0, 1) is wrong! 470 Let’s find the reason why this difference happened. If we just put tf.space_to_batch and tf.batch_to_space before and after convolution layer, then we can use convolution operation for atrous convolution (profit!). On the other hand, it isn’t straightforward how to handle stride and dilation together. In TensorFlow, we need to be aware of this problem in depthwise convolution.3) Architecture design principles for efficient segmentation networkUsually segmentation takes more time than classification since it has to upsample high spatial resolution map. Therefore, it is important to reduce inference time as much as possible to make the application run in real-time.It is important to focus on spatial resolution when designing real-time application. One of the easiest ways is to reduce the size of input images without losing accuracy. Assuming that the network is fully convolutional, you can accelerate the model about four times faster if the size of input is halved. In literature[2], it is known that small size of input images doesn’t hurt accuracy a lot.Another simple strategy to adopt is early downsampling when stacking convolution layers. Even with the same number of convolution layers, you can reduce the time with strided convolution or pooling within early layers.There is also a tip for selecting the size of input image when you use Tensorflow Lite quantized model. The optimized implementations of convolution run best when the width and height of image is multiple of 8. Tensorflow Lite first loads multiples of 8, then multiples of 4, 2 and 1 respectively. Therefore, it is the best to keep the size of every input of layer as a multiple of 8.Substituting multiple operations into single operation can improve speed a bit. For example, convolution followed by max pooling can be usually replaced by strided convolution. Transpose convolution can also be replaced by resizing followed by convolution. In general, these operations are substitutable because they perform the same role in the network. There are no big empirical differences among these operations. <!-- substitutable -->Tips described above help to accelerate inference speed but they can also hurt accuracy. Therefore, we adopted some state-of-the-art blocks rather than using naive convolution blocks.Figure 5.  Atrous spatial pyramid pooling (figure courtesy of Liang-Chieh Chen) Atrous spatial pyramid pooling[1] is a block which mimics the pyramid pooling operation with atrous convolution. DeepLab uses this block in the last layer.We also substitute most of the convolution layers with efficient depthwise separable convolution layers. They are basic building blocks for MobileNetV1[3] and MobileNetV2[4] which are well optimized in Tensorflow Lite.4) Folding batchnorm into atrous depthwise convolutionWhen quantizing convolution operation followed by batchnorm, batchnorm layer must be folded into the convolution layers to reduce computation cost. After folding, the batchnorm is reduced to folded weights and folded biases and the batchnorm-folded convolution will be computed in one convolution layer in TensorFlow Lite[5]. Batchnorm gets automatically folded using tf.contrib.quantize if the batchnorm layer comes right after the convolution layer. However, folding batchnorm into atrous depthwise convolution is not easy.In TensorFlow’s slim.separable_convolution2d, atrous depthwise convolution is implemented by adding SpaceToBatchND and BatchToSpaceND operations to normal depthwise convolution as mentioned previously. If you add a batchnorm to this operation by including argument normalizer_fn=slim.batch_norm, batchnorm does not get attached directly to the convolution layer. Instead, the graph will look like the diagram below: SpaceToBatchND → DepthwiseConv2dNative → BatchToSpaceND → BatchNorm The first thing we tried was to modify TensorFlow quantization to fold batchnorm bypassing BatchToSpaceND without changing the order of operations. With this approach, the folded bias term remained after BatchToSpaceND, away from the convolution layer. Then, it became separate BroadcastAdd operation in TensorFlow Lite model rather than fused into convolution. Surprisingly, it turned out that BroadcastAdd was much slower than the corresponding convolution operation in our experiment:Timing log from the experiment on Galaxy S8 ... [DepthwiseConv] elapsed time: 34us [BroadcastAdd] elapsed time: 107us ... To remove BroadcastAdd layer, we decided to change the network itself instead of fixing TensorFlow quantization. Within slim.separable_convolution2d layer, we swapped positions of BatchNorm and BatchToSpaceND. SpaceToBatchND → DepthwiseConv2dNative → BatchNorm → BatchToSpaceND Even though batchnorm relocation could lead to different outputs values compared to the original, we did not notice any degradation in segmentation quality.5) SIMD-optimized implementation for quantized resize bilinear layerAt the time of accelerating TensorFlow Lite framework, conv2d_transpose layer was not supported. However, we could use ResizeBilinear layer for upsampling as well. The only problem of this layer is that there is no quantized implementation, therefore we implemented our own SIMD quantized version of 2x2 upsampling ResizeBilinear layer.Figure 6. 2x2 bilinear upsampling without corner alignnment. To upsample image, original image pixels (red circles) are interlayed with new interpolated image pixels (grey circles). In order to simplify implementation we do not compute pixel values for the bottommost and rightmost pixels, denoted as green circles.for (int b = 0; b < batches; b++) { for (int y0 = 0, y = 0; y <= output_height - 2; y += 2, y0++) { for (int x0 = 0, x = 0; x <= output_width - 2; x += 2, x0++) { int32 x1 = std::min(x0 + 1, input_width - 1); int32 y1 = std::min(y0 + 1, input_height - 1); ResizeBilinearKernel2x2(x0, x1, y0, y1, x, y, depth, b, input_data, input_dims, output_data, output_dims); } } } Every new pixel value is computed for each batch separately. Our core function ResizeBilinearKernel2x2 computes 4 pixel values across multiple channels at once.Figure 7. Example of 2x2 bilinear upsampling of top left corner of image. (a) Original pixel values are simply reused and (b) – (d) used to interpolate new pixel values. Red circles represent original pixel values. Blue circles are new interpolated pixel values computed from pixel values denoted as circles with black circumference. NEON (Advanced SIMD) intrinsics enable us to process multiple data at once with a single instruction, in other words processing multiple data at once. Since we deal with uint8 input values we can store our data in one of the following formats uint8x16_t, uint8x8_t and uint8_t, that can hold 16, 8 and 1 uint8 values respectively. This representation allows to interpolate pixel values across multiple channels at once. Network architecture is highly rewarded when channels of feature maps are multiples of 16 or 8:// Handle 16 input channels at once int step = 16; for (int ic16 = ic; ic16 <= depth - step; ic16 += step) { ... ic += step; } // Handle 8 input channels at a once step = 8; for (int ic8 = ic; ic8 <= depth - step; ic8 += step) { ... ic += step; } // Handle one input channel at once for (int ic1 = ic; ic1 < depth; ic1++) { ... } SIMD implementation of quantized bilinear upsampling is straightforward. Top left pixel value is reused (Fig. 7a). Bottom left (Fig. 7b) and top right (Fig. 7c) pixel values are mean of two adjacent original pixel values. Finally, botom right pixel (Fig. 7d) is mean of 4 diagonally adjacent original pixel values.The only issue that we have to take care of is 8-bit integer overflow. Without a solid knowledge of NEON intrinsics we could go down the rabbit hole of taking care of overflowing by ourself. Fortunately, the range of NEON intrinsics is broad and we can utilize those intrinsics that fit our needs. The snippet of code below (using vrhaddq_u8) shows an interpolation (Fig. 7d) of 16 pixel values at once for bottom right pixel value:// Bottom right output_ptr += output_x_offset; uint8x16_t left_interpolation = vrhaddq_u8(x0y0, x0y1); uint8x16_t right_interpolation = vrhaddq_u8(x1y0, x1y1); uint8x16_t bottom_right_interpolation = vrhaddq_u8(left_interpolation, right_interpolation); vst1q_u8(output_ptr, bottom_right_interpolation); 6) Pitfalls in softmax layer and demo codeThe first impression of inference in TensorFlow Lite was very slow. It took 85 ms in Galaxy J7 at that time. We tested the first prototype of TensorFlow Lite demo app by just changing the output size from 1,001 to 51,200 (= 160x160x2)After profiling, we found out that there were two unbelievable bottlenecks in implementation. Out of 85 ms of inference time, tensors[idx].copyTo(outputs.get(idx)); line in Tensor.java took up to 11 ms (13 %) and softmax layer 23 ms (27 %). If we would be able to accelerate those operations, we could reduce almost 40 % of the total inference time!First, we looked at the demo code and identified tensors[idx].copyTo(outputs.get(idx)); as a source of problem. It seemed that the slowdown was caused by copyTo operation, but to our surprise it came from int[] dstShape = NativeInterpreterWrapper.shapeOf(dst); because it checks every element (in our case, 51,200) of array to fill the shape. After fixing the output size, we gained 13 % speedup in inference time.<T> T copyTo(T dst) { ... // This is just example, of course, hardcoding output shape here is a bad practice // In our actual app, we build our own JNI interface with just using c++ code // int[] dstShape = NativeInterpreterWrapper.shapeOf(dst); int[] dstShape = {1, width*height*channel}; ... } The softmax layer was our next problem. TensorFlow Lite’s optimized softmax implementation assumes that depth (= channel) is bigger than outer_size (= height x width). In classification task, the usual output looks like [1, 1(height), 1(width), 1001(depth)], but in our segmentation task, depth is 2 and outer_size is multiple of height and width (outer_size » depth). Implementation of softmax layer in Tensorflow Lite is optimized for classification task and therefore loops over depth instead of outer_size. This leads to unacceptably slow inference time of softmax layer when used in segmentation network.We can solve this problem in many different ways. First, we can just use sigmoid layer instead of softmax in 2-class portrait segmentation. TensorFlow Lite has very well optimized sigmoid layer.Secondly, we could write SIMD optimized code and loop over depth instead of outer_size. You can see similar implementation at Tencent’s ncnn softmax layer, however, this approach has still its shortcomings. Unlike ncnn, TensorFlow Lite uses NHWC as a default tensor format:Figure 8. NHWC vs NCHW In other words, for NHWC, near elements of tensor hold channel-wise information and not spatial-wise. It is not simple to write optimized code for any channel size, unless you include transpose operation before and after softmax layer. In our case, we tried to implement softmax layer assumming 2-channel output.Thirdly, we can implement softmax layer using pre-calculated lookup table. Because we use 8-bit quantization and 2-class output (foreground and background) there are only 65,536 (= 256x256) different combinations of quantized input values that can be stored in lookup table:for (int fg = 0; fg < 256; fg++) { for (int bg = 0; bg < 256; bg++) { // Dequantize float fg_real = input->params.scale * (fg - input->params.zero_point); float bg_real = input->params.scale * (bg - input->params.zero_point); // Pre-calculating Softmax Values ... // Quantize precalculated_softmax[x][y] = static_cast<uint8_t>(clamped); } } ConclusionIn this post, we described the main challenges we had to solve in order to run portrait segmentation network on mobile devices. Our main focus was to keep high segmentation accuracy while being able to support even old devices, such as Samsung Galaxy J7. We wish our tips and tricks can give a better understanding of how to overcome common challenges when designing neural networks and inference engines for mobile devices.At the top of this post you can see portrait segmentation effect that is now available in Azar app. If you have any questions or want to discuss anything related to segmentation task, contact us at [email protected]. Enjoy Azar and mobile deep learning world!References[1] L. Chen, G. Papandreou, F. Schroff, H. Adam. Rethinking Atrous Convolution for Semantic Image Segmentation. June 17, 2017, https://arxiv.org/abs/1706.05587[2] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna. Rethinking the Inception Architecture for Computer Vision. December 11, 2015, https://arxiv.org/abs/1512.00567[3] A. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, H. Adam. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications, April 17, 2017, https://arxiv.org/abs/1704.04861[4] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L. Chen. MobileNetV2: Inverted Residuals and Linear Bottlenecks. January 18, 2018, https://arxiv.org/abs/1801.04381[5] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, D. Kalenichenko. Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference. December 15, 2017, https://arxiv.org/abs/1712.05877
조회수 13564

슬랙봇, 어디까지 만들어봤니?

스포카에서 다년간 일하면서 나에게는 몇 가지 별명이 생겼다. 그 중 하나는 봇맘(Bot mom)이다. 다른 스타트업에서처럼 으레 스포카에서도 주어지는 일만 하는게 아니라 작고 큰 문제를 스스로 발견하고 고민할 기회가 왕왕 생긴다. 나 또한 그런 기회가 있었고 그러던 중 (귀차니즘을 극복하기 위해라고 쓰고) 일을 더 효율적으로 하기 위해(라고 읽는다) 봇(Bot)에 재미를 느끼게 되었다. 그리고 하나 둘 봇으로 문제를 해결하게 되었고 어느새 사람들이 그 별명을 붙여주었다.봇(Bot)2014년 즈음부터 스포카는 슬랙(Slack)을 사내 메신저로 사용하기 시작했다. 슬랙 도입 초창기에는 기본적인 업무 커뮤니케이션과 아틀라시안 제품군(JIRA, Confluence 등), Github 등 사내 업무 툴의 슬랙 라우팅 기능으로만 슬랙을 사용하였다. 하지만 기본 기능 만으로는 실제 업무 환경에서 불편한 부분들이 더러 있어 슬랙봇 기능을 점차 활발히 사용하게 되었다. 팀마다 사용빈도는 다르지만 현재 많은 직원이 슬랙봇을 활용하고 있는데 지속적으로 업무 환경을 개선하는데 봇 기능이 상당한 기여를 하고 있다.인터넷 상에서 자동화된 작업(스크립트)를 실행하는 응용 소프트웨어봇(Bot)은 위와 같이 설명되고 있다. 예를 들어, 슬랙에서 사용자가 설정한 단어가 입력되거나 시간대가 되었을 때, 설정했던 이미지나 텍스트가 자동으로 나오는 기능이라고 생각하면 된다.슬랙에서 기본적으로 제공하는 슬랙 봇과 Reminder 기능만 잘 활용해도 누구나 업무환경 개선을 시도해볼 수 있다. 개인적으로 스포카의 봇 활용(hacking)1은 어떠한 다른 팀과 비교해도 뒤지지 않는다 생각한다. 실제 업무에 적용한 사례를 보면 봇이 무엇인지, 무엇을 할 수 있는지 아는데 도움이 될 것이다. 큰 도움이 되고 있었던 사례를 모아 소개하겠다.2Case1. 자연스럽게 직원들에게 세뇌시키기상황 및 의도서비스 내 용어가 팀별로 다르게 쓰이거나 여러가지로 불리고 있는 것들이 있었다. 혹은 서비스가 런칭/업데이트되면서 개편된 제품/기능이름들이 있었다. 이는 아는 사람끼리는 문제가 없지만 신규입사자나 아직 전달이 덜된 타팀과 소통할 때에는 오해가 생길 수 있었다. 이런 상황에서 UXD팀에서는 추가적으로 새로운 이름을 알리고 즉각 교정 효과를 볼 수도 있는 효율적인 방법을 고안하고자 했다.1-1. 도도 매틱이 도도 메시지로 서비스명이 변경되었음을 알리는 봇이다1-2. 개편된 제품/기능이름을 알릴 때 쓰였던 슬랙봇들. 시간이 지나면서 제 임무를 다하고 사라졌다.효과잘못된 단어를 사용할 때마다 봇이 알려주니 즉각 교정 효과가 나타났다. 사람마다 교육되는 기간을 달랐지만 점차 잘못된 단어를 사용하는 사람들이 사라졌고, 몇 개월 후에는 옛날의 잘못된 단어가 무엇인지 까먹은 사람도 있었다. 그리고 시간이 지나고 제 목표를 달성한 슬랙봇들을 삭제하기까지 이르렀다.Case2. 개발자님 도와주세요ㅠㅠ상황 및 의도디자이너가 코드를 다루다가 가끔 알 수 없는 함정에 빠질 때가 있다. 서버가 왜인지 켜지지 않는다거나 원인을 명확히 알 수 없는 에러가 뜬다거나 하는 경우다. 그런 때면 개발자에게 도움을 요청하는데, 개발자의 입장에서는 진행하고 있던 업무를 잠시 중단하고 해결할 수 있는 커맨드를 알려주거나 알아보는데 시간이 걸릴 수 있다. 이럴 때 봇이 취해야하는 커맨드를 알려준다.봇으로 개발자가 도와줘야 하는 단계가 하나 줄었다!효과개발자가 도움요청 메시지를 보기 전, 디자이너가 먼저 바로 응급처치를 해볼 수 있어 덜 답답했고 개발자도 하나의 예상원인을 제거할 수 있어 빠르게 상황을 파악할 수 있었다.Case3. 항상 똑같은 질문과 답변은 그만!상황 및 의도기억력의 한계와 투명한 업무 진행상황 공유를 위해 이슈 기록 등 문서 작성에 기를 가하는 문화가 있다보니 사내위키문서가 자연스레 방대해졌다. 찾고자 하는 문서가 어딨는지 못 찾아 메일함과 위키사이트를 헤매고 못 찾으면 항상 팀원들에게 물어보게 되어 괜히 미안한 상황이 있었다. 그냥 누군가 물어볼 때 딱!하고 찾아주었으면 했다.다른 경우로는, 매번 특정 팀에게 물어보는 것이 있다. 사이트 내 친절히 설명을 작성하고 공지해도 정보 접근이 귀찮거나 어려운 곳에 있으면 바로 담당자에게 물어서 바로 올바른 답변을 얻고자 하게 된다. 이런 경우, 같은 질문을 하는 사람은 수십 명인데 답변하는 사람은 한 두명여서 답변하는 담당자는 피로해질 수 있다.3-1. 우리팀 주간미팅 회의록이 어딨더라...?3-2. 디자인팀에게 요청할 때 뭘 알려드려야 하지?3-3. 이 지역 담당자가 누구더라?효과원하는 문서의 바로가기 링크를 바로 얻거나 정보를 얻을 수 있어 위키 메뉴를 헤매지 않고 시간을 절약할 수 있었다. 반복적으로 물어보게 되는 사항을 물어보고 싶을 때 불편한 마음을 전혀 가지지 않아도 되었다.Case4. 이번엔 누구에게 의견을 물어볼까?상황 및 의도현재 스포카 Visual design팀(이하 VD팀)은 5명이며 디자인이라면 모두 관심을 가지고 의견을 주는데 주저함이 없다. 어떤 이슈를 진행할 때 중간 점검의 느낌으로 가볍게 1~2명에게 리뷰를 받고 싶을 때가 있다. 항상 같은 사람에게만 리뷰를 부탁하는건 아닌지, 다양한 의견을 받아보고는 싶은데 누구에게 돌리는게 좋을까, 리뷰어 선정에 고민을 하게 될 때가 있다. 혹은 이슈진행자가 정해지지 않았을 때 마음의 짐을 덜고 책임자를 정하는 잔인한 방법이 되기도 한다.(ㅋㅋ) 5명인데 1명 혹은 2명을 고르고 싶으므로 or/and를 병기하여 모든 경우의 수를 정리하여 봇을 만들었다.VD리뷰랜덤효과누구에게 리뷰를 맡길지 고민하는 시간이 줄었다. 타팀에서도 VD팀 누군가에게 리뷰를 부탁하고 싶을 때 활용되기도 한다. 하지만 휴가 중이라던지 가끔 리뷰를 볼 수 없는 사람이 계속 무작위로 나올 때가 있어 두세번 봇을 불러야 하는 일이 있다.Case5. 다나와 대화형 봇 (심화)앞서 소개한 유형들이 너무 단순하다고 느껴진다면 키워드 봇을 연속적으로 활용해보는 방법도 있다. 채팅형 봇을 만든 듯한 착각을 느끼게 할 수 있다.사이즈 다나와 (혹자는 이 사례를 보고 슬랙해킹의 정점을 달려가는 것 아니냐 감탄하였다.)Case6. 잊는 법이 없는 나만의 비서!봇이 일상화되니 왠만한 정기적인 업무일정은 무조건 봇으로 만드는게 습관이 되었다. 예전에는 다른 봇제작 서비스를 통해 만들던 기능이었는데, 슬랙에 리마인드(Remind) 기능이 업데이트 되면서 더 편해졌다. 리마인드 기능 설명은 이쪽을 참고 바란다.6-1. 스프린트 시작 알림 봇6-2. 데일리미팅 알림 봇6-3. 주말의 시작을 알리는 봇6-4. 파트타이머 급여 처리를 잊지 않도록 도와주는 비서봇Case7. 슬랙 API를 활용한 데이터드리븐 봇 (고급)상황 및 의도지금까지 소개한 것들은 회사 내부에서 업무를 진행할 때 도움을 받거나 내부 커뮤니케이션을 위한 것들이었다. 이번에 소개할 것은 회사 서비스와 관련된 개발자 친화적인 방법이다. 서비스 내 DB와 슬랙에서 제공하는 API를 접목하여 별도의 트래킹(tracking)툴 없이 실제 사용자의 행동 중 주요하게 알아야 하는 것을 슬랙봇으로 만든 것들이다.7-1. 부정적립으로 의심되는 이벤트를 알려주는 봇7-2. 매장 잔여코인 알림과 코인결제완료를 알려주는 봇효과별도의 트래킹툴이나 웹사이트에 접속할 필요 없이 실시간 데이터를 파악할 수 있었다. 또한 서비스에 주요한 영향을 끼치는 사용자의 실제 행동을 팀원들과 함께 빠르게 공유할 수 있었다.봇을 만들 수 있는 다른 방법슬랙의 리마인드 기능을 쓰지 않더라도 봇을 부릴(?) 수 있는 방법이 있다. 슬랙봇은 슬랙을 사용해야하고 관리자 권한이 있어야 설정 가능하다. 그러므로 개인적으로 쓴다면 아래 2가지 서비스들을 추천한다. 조합할 수 있는 서비스가 다양하니 자동화할 수 있는 아이디어가 있다면 시너지가 엄청날 것이다. 업무 뿐만 아니라 일상생활에도 활용할 수 있다.Zapier글쓴이가 슬랙에 리마인드 기능이 없을 때 애용하던 서비스이다. 무료 플랜으로 사용하면 설정할 수 있는 봇 개수와 작동하는 횟수가 제한적이지만 소소하게 가끔 필요한 것을 쓰기에는 괜찮다. 업데이트가 계속 되고 있으니 시도해보시라.IFTTTIf this, then that. 컨셉별 봇 레시피가 잘 정리되어 있어 바로 일상생활에 적용해볼 아이디어를 제공한다. 슬랙 외에도 다양한 앱과 연동하여 사용할 수 있는 장점이 있다.슬랙봇과 스포칸업무에 유용한 봇을 위주로 소개했으나 스포카의 슬랙봇은 업무의 즐거움을 향상시키는 스포칸의 드립 아카이브 역할을 하기도 한다. 업무에 활용하는 것만큼 다양한 방식으로 소구되고 있는데, 드립의 특성상 시간이 지나면 그 재미가 무뎌지는 것들이 있어 굳이 소개하지는 않겠다. 또한, 그외 개발자분께서 직접 창의적인 봇용 앱을 만든 사례도 여러 개 있었는데 나중에 기회가 되어 소개를 해볼 수 있으면 좋겠다.계속 슬랙이 업데이트되면서 나 외에도 비IT직군도 슬랙봇을 잘 활용해나가고 있고, 다른 팀원들도 번뜩이는 위트를 겸하며 슬랙봇을 활용하고 계시다. 여러가지로 활용되고 있는 슬랙봇은 하나의 값진 유산이라고 생각되기까지 한다. 간단한 기능임에도 더 집중해야 할 곳에 집중할 수 있도록 도와주기도 하고, 동료 간의 유대감을 깊게 만들기도 하기 때문이다. 스포카 외에 슬랙을 사용하는 다른 회사/팀들도 각자 사용하고 계시는 툴을 재밌고 유용한 방식으로 활용하며 팀 커뮤니케이션에 보탬이 되었으면 좋겠다.시스템 혹은 프로그램의 문제를 고치기 위한 행위 ↩이 포스팅의 예시 중에는 1~2년 전 스포카의 슬랙에서 활발히 쓰였다가 현재는 잘 사용되지 않는 경우도 있다. ↩#스포카 #개발 #개발자 #사내문화 #조직문화 #인사이트 #꿀팁
조회수 1607

자바스크립트에대해서

안녕하세요. 크몽 개발팀입니다.오늘 저는 좀 심오한 주제를 다뤄보려고합니다.이번에 제가 다룰 주제는 ‘자바스크립트’라는 언어입니다.자바스크립트라는 언어와 자바라는 언어에 대해서 혼동을 하는 경우가 많은데요,자바와 자바스크립트는 완전히 다른언어입니다. 쉽게말해서 자바는 서버를 구축하는 부분을 주를 담당하고,자바스크립트는 화면을 구성하는 부분에서 사용되는 프로그래밍 언어라고 보시면 될 것 같습니다.(자바스크립트의 이름을 만들 당시에 자바라는 언어가 유행을 해서 자바스크립트라고 이름을 지었다고 하네요.원래 이 언어의 이름은 라이브 스크립트입니다.)물론 자바스크립트로 서버를 구축을 할 수도 있습니다.(node.js라고하는 플랫폼입니다. 자바스크립트를 이용하여 서버를 구축할 수있는 플랫폼입니다.자세한 사항은 책이나 위키피디아를 참고하시면 좋을 듯 합니다.)각설하고,아무튼 자바스크립트라는 언어에 대해서 좀더 자세히 알아보겠습니다.자바스크립트라는 언어를 알기 위해서는 일단 스크립트라는 것이 무엇인지에 대해 좀더 알아야 합니다.위키피디아에 따르면 스크립트 언어란,'응용프로그램과 독립하여 사용되고 일반적으로 응용프로그램의 언어와 다른 언어로 사용되어최종사용자가 응용프로그램의 동작을 사용자의 요구에 맞게 수행할 수 있도록 해준다.' 라고 정의하고 있습니다. 어렵지요? 쉽게 말하면 연극에서 ‘스크립트’라는 것에 서 유래 되었다고 하고, 그뜻이 연극에서의 시나리오, 각본을 의미합니다. 그 의미를 그대로 적용하면 ‘대본, 시나리오만 제공하면 알아서 작동한다.' 는 그런 뜻이지요.대충 감이 잡히셨나요?자바스크립트는 TIOBE 라는 소프트웨어 회사에서 발표한 2014년 프로그래밍 언어순위에서도 상당히 상위권에 차지를 하고있습니다.그만큼 많이 사용이 된다는 의미겠지요.매우 좋은 것처럼 보이지만 자바스크립트가 만만한 언어는 아닙니다.제가 듣기로는 ‘자바스크립트는 악마의 언어’라고 불린다고 들었습니다.그렇게 불리는 이유는 그만큼 언어가 유연하기때문입니다.조금전에 언급했듯이 연극에서의 대본과 시나리오를 프로그래머가 직접 만들어야한다는 것입니다.그만큼 프로그래밍하기 쉽지 않다는 것이겠지요.자바스크립트는 단점이 바로 장점입니다.'유연하다는 것' 때문에 사람들의 입맛에 맞게 커스터마이징을 할 수있다는 것이고웹상에 이미 프로그래머들이 만들어 놓은 많은 라이브러리가 있습니다.우리는 이걸 잘 이용하면 되겠지요?좀 더 자바스크립에 대해서 자세히 알고싶다면 ‘javascript inside’라는 책을 참고하여 공부해보시면 좋을 듯 하네요. ---------------------------------------------------------------------------------------------------저는 크몽 개발팀의 Sean이었습니다. #크몽 #개발자 #개발팀 #팀원소개 #기업문화
조회수 1010

코인원 크루의 채굴 현장을 포착했다! - ‘코인원 작업증명(PoW)’을 소개합니다

블록체인에서 PoW는 Proof of Work, 즉 작업증명을 말합니다. 블록체인의 암호화된 작업에 대해 참여자가 암호를 풀면, 보상을 제공받는 것이죠.오늘은 코인원의 PoW에 대해서 이야기 해보려고 합니다. '코인원 PoW'의 PoW는 블록체인을 기반으로 금융을 혁신하는 기업답게 블록체인 용어에서 차용했어요. :-)  코인원 크루들이 스스로와 동료들의 회고를 진행하고 피드백을 주고 받는 과정을 통해, 업무 개선과 성과에 대한 보상을 제공받도록 만들어진 일종의 성과관리 시스템이죠. 코인원 피플팀은 코인원 PoW 과정을 다음과 같이 설명하고 있습니다.크루들이 자신들의 업무 성과에 대해 투명하게 풀어놓는 회고를 우선적으로 진행해요. 그 후 함께 업무를 진행한 페어 그룹(pair group)끼리 서로 잘된 업무와 지원이 필요한 부분에 대해 대화를 진행하며, 이를 통해 개선점과 방법을 찾아 업무에 적용합니다.코인원 PoW의 특별한 점은, 대부분의 과정이 정성적으로 진행된다는 것에 있습니다. 물론 숫자로 보이는 결과도 중요하지만, 모든 일은 결과 못지 않게 과정도 중요하다고 판단했기 때문이에요. 그 과정에 충실함을 보인 크루들을 선별해 ‘슈퍼크루'로 지정하고 보상을 제공하는 과정도 여기에 포함됩니다. 이 변화무쌍한, 그리고 결코 쉽지 않은 크립토(crypto) 세계에서 ‘정도'를 걸어가고 있는 ‘코인원스러운' 성과관리 시스템이 아닐까 생각합니다. :-) 우선 코인원 PoW가 어떤 과정으로 진행되는지 한 번 살펴볼까요? 코인원 PoW는 아래와 같은 5가지 단계로 진행됩니다.Self mining셀프마이닝은 지난 6개월 동안 자신이 진행한 업무와 그 과정에 대해 에세이를 작성하는 단계입니다. 에세이를 작성할 때는 자신이 진행한 업무와, 업무를 진행하는 과정에서 본인이 생각하는 잘한 부분 및 아쉬웠던 점들 등에 대해서 작성합니다. ‘잘한 부분'의 경우, 성과가 좋았던 점 외에 성과는 좋지 않았어도 최선을 다한 것에 대해 상세히 작성합니다. Peer mining피어마이닝은 업무적으로 연관된 동료 크루의 셀프마이닝을 토대로 그 동료에 대한 의견을 작성하는 단계입니다. 함께 일했을 때 동료 크루의 좋았던 점, 훌륭한 점, 배워야 할 점 등을 서술하고, 앞으로 더 효율적인 협업을 위해 동료가 개선하면 좋을 것 같은 점도 함께 작성해요. Segwit세그윗 단계에서는 위 두 단계에서 도출된 자기 평가와 동료 평가를 토대로 각 셀의 리더들과 1:1 면담을 진행합니다. 이때 셀 리더들이 꼭 염두해야 하는 것은, 코인원 PoW를 통해 우리가 이끌어내고자 하는 것은 '평소의 관심과 피드백, 그리고 동반 성장'이라는 것이죠. Blue paper세그윗을 통해 최종 작성되는 것이 바로 블루페이퍼에요. 크루들의 면담을 진행한 각 셀의 리더들이 작성하죠. 이 내용은 크루들이 지난 6개월 동안 한 일에 대한 자기 자신과 동료, 그리고 셀 리더의 피드백이 담긴 한 장의 문서죠. Consensus마지막으로 컨센서스 단계에서는 최종 완성된 블루페이퍼를 바탕으로 본부별 슈퍼크루를 선정합니다. 그리고 이렇게 선정된 슈퍼크루에 대해 전체 크루가 동의 가능한지에 대한 적절성 심사가 한 번 더 진행됩니다. 현재 코인원에는 약 120명의 크루들이 일하고 있어요. 사실 모든 크루들의 정성적인 분석 과정을 진행하는 것이 쉬운 일은 아니에요. 코인원 PoW는 셀프마이닝부터 블루페이퍼 작성 및 슈퍼크루 선정까지 약 5주에 걸쳐 진행되는, 길지만 자연스러운 평가와 이를 통한 성장의 과정이라고 생각합니다.이 과정에서 코인원 피플팀 여러분들이 정말 많은 노력과 정성을 기울여주고 계시죠!그렇게 10월의 어느 날, 2018년 상반기의 코인원 PoW가 성공적으로 마무리가 됐습니다. :-)코인원의 모든 크루들이 지난 상반기의 업무에 대해 작업증명을 진행했죠! 그리고 또 다른 6개월 동안 앞으로 다시 힘차게 나아가기 위해 자신의 어떤 좋은 점을 강화하고, 어떤 점은 보완하면 될지를 나 자신, 그리고 동료 크루들과 공유하는 시간이었습니다.또, 이렇게 진행된 2018년 코인원 PoW를 통해 여섯 명의 슈퍼크루가 탄생했어요!2018 코인원 슈퍼크루를 소개합니다 :-)올 한해도 모든 크루가 각자의 분야에서 최선을 다했어요.슈퍼크루는 그 중에서도 특히 다른 크루들에게 좋은 영향을 준 크루들을 선정한 것인데요, 이 분들에게는 코인원의 특별한 추가 보상이 제공될 예정이랍니다. :-)코인원은 앞으로도 크루들이 즐겁게 일하면서 성장할 수 있는 여러가지 재밌고 유익한 도전들을 해보려고 합니다. 코인원이 크립토 세상에서 어떤 즐거운 도전들을 하고 있는지, 앞으로도 코인원 공식 블로그를 통해 지켜봐주세요! :-)#코인원 #블록체인 #기술기업 #암호화폐 #스타트업인사이트 #기업문화 #조직문화 #사내복지 #업무환경 #팀원소개
조회수 2703

웹 개발자 react native와 친구 되다

안녕하세요. 프론트엔드 bk입니다.자존감이 폭발하는 요즘. 제 자신이 뿌듯하여 이 기분을 오래 간직하고 싶어 쓰는 글입니다. 물론 react native 설치법, 꿀팁 같은 건 없고(react native 경력 2개월) 제가 느꼈던 react native 장단점과 크몽에서 새롭게 선보인 단기 알바 매칭 앱 SOON react native 개발기에 대해 겸손히 적어보려 합니다.어떻게 React Native로 개발하게 되었는가우선 별 볼 일 없는 저를 소개하자면 개발 경력 3년 반 쯤 넘고 React 2년 6개월, Vue 9개월 정도를 프론트 메인 라이브러리로 사용했습니다. 그 동안 훌륭한 분들과 함께 개발을 해왔고, 현재 크몽에 입사한 지는 10개월쯤 되었네요,개발자라면 react native (이하 RN)에 대해선 한 번쯤 들어보셨을 겁니다. 저도 2년 전쯤 처음 들어봤는데요 그때는 네이티브 앱에 비해 느리다, 성능을 못 따라간다, 역시 네이티브!라는 말이 많아서 아 그런가 보다 하고 웹 개발에만 집중했었죠. 그렇게 2018년 9월, 열심히 휴게실에서 크몽의 Vuejs 구조를 잡던 중에 저희 크몽 CTO(a.k.a 크알)가 크몽에서 신규 플랫폼 단기 알바 앱을 기획 중인데, 빠르게 시장 반응을 확인하고, 개발 리소스를 최소화하기 위해 RN로 개발하면 어떨까 하고 React를 경험했던 저에게 권유하셨습니다. 무덤덤한 척했지만 사실 기분 째 질 뻔했습니다. 누군가에게 필요로 하는 사람이 된다는 건 기분 좋은 일이니까요.그렇게 약 1주일간 RN을 필사적으로 공부하여 10월 초부터 본격적인 SOON 폭풍 개발을 시작했습니다. 기본적인 개발 스택은 python + RN + mobx 조합으로 구축되었습니다. (백엔드분 들도 python으로 처음 도입!) 여러 레퍼런스들을 보며 나만의 best practice를 찾아갔고 mobx와의 조합도 훌륭했습니다. react는 익숙하지만 처음 앱 개발을 하는 터라 수많은 시행착오를 겪어야 했죠. 그만큼 새로운 경험도 엄청나게 했습니다. RN 개발자가 당연히? 저 혼자 였기 때문에 누구에게 물어볼 수 도 없었고 그냥 헤딩하며 하나하나 알아갔던것 같네요 ㅎㅎ..... 불과 얼마 전까지도 초창기에 (1달 전..) 짰던 코드를 보고 한숨을 깊게 쉬고 리팩터링을 한 것 수두룩합니다. 그 사이 실력이 늘어났나 보다!라고 열심히 행복 회로를 돌렸죠.RN... 정말 할만할까?정말 할만합니다. 우선 RN은 웹 개발자 (초급 이상의 javascript를 이용한다는 전제하에)라면 10초도 안 걸려 hello world를 띄울 수 있을 만큼 쉽게 만들어져 있습니다.요즘은 expo라는 툴 덕분에 안 그래도 쉽게 개발할 수 있게 만들어진 RN을 더더 더욱 쉽게 접할 수 있게 되어있습니다.hello world기본적으로 RN은 React 기반으로 되어있기에 나는 React를 못써~ 나는 vue or angular 밖에 안 해봤어~라고 하더라도 충분히 빠르게 배울 수 있으리라 생각합니다. React나 vue나 거기서 거기 (위험한 발언이지만 둘 다 상용서비스로 사용해본 입장에선 하나 배우면 다른 라이브러리를 배우는 시간은 처음 배울 때 대비하여 절반도 안 걸렸던 것 같네요)앱 개발이라고 안 하기 보기보단 일단 hello world만 찍어보면 와 재밌다~ 하고 이것저것 더 해보는 자신의 모습을 볼 수 있을 겁니다. 앱 개발을 위해서 RN을 해본다기보다 React를 아주 재미있게 배울 수 있는 도구로서도 훌륭합니다. 그냥 지루하게 docs 보면서 하는 것보단 전혀 새로운 분야를 배우면서 자연스레 React도 배울 수 있습니다. Facebook에서 React를 내세우며 앱 개발 RN도 할 수 있다! 의 기술력 과시가 아니라 RN은 정말 쓸만했습니다.뭘 선택해도 훌륭한 선택. 하지만 난 react와 vueRN의 미친 장점첫 번째는 ios, android 동시 개발하나의 코드로 ios, android가 만들어집니다. 여기서 한술 더 떠 view 부분을 html, css로 변환 후 몇몇 로직들만 수정하면 web으로 그대로 가져올 수 있습니다. 반대로 react로 만들어진 web 기반 서비스를 react native로 변환도 가능합니다. RN이 접근한 Learn once, write anywhere가 뭔가 멋있었죠. (95% 정도는 사실이고 5%의 코드는 ios, android를 나누어 개발합니다 ㅜㅜ)두 번째는 미친 수준의 개발 속도딱히 RN만의 장점은 아니지만.. React는 live-reload(코드가 변경되면 자동으로 새로 고침)와 hot-reload(코드가 변경되면 변경된 딱 그 부분만 렌더링)를 지원합니다. 그 어떤 복잡한 설정 없이 도요. 일단 RN은 compile, build 과정이라는 게 없다고 봐도 되기 때문에(속도 면에서) 굳이 live, hot reload가 없이도 빠른 개발이 가능합니다. 하지만 저 두 놈이 있기에 코드를 수정하면 그 화면을 직접 보는 데까지 오버 좀 섞으면 1초도 채 안 걸립니다. 사실 1~5초 걸림QA 시에도 변경사항을 바로 확인할 수 있습니다. 디자이너, 기획자와의 피드백을 빠르게 반영할 수 있어 UX/UI를 잡는데 아주 효과적입니다. 상상보단 직접 보는 게 더 와 닿으니까요. expo환경에서 개발하고 있다면 가상 simulator가 없어도, xcode, android studio를 건들지 않아도 개발/배포하는 데 아무 지장이 없습니다.(SOON이 론칭되고 나서도 android studio는 아직 설치도 안 했습니다.) 이 정도만 해도 장점이 꽤 큰데 사실 진짜 장점은 다음입니다.마지막으로 OTA(실시간 배포) 기능입니다.정말 이것이 제일 미친 장점입니다. RN으로 만들어진 앱은 기능 추가, 버그 수정, 디자인이 바뀌어도 앱 배포를 위한 심사를 거치지 않습니다. 앱 실행 시 언제나 최신 javascript를 다운로드하고 실행하여 유저는 언제나 최신 상태의 앱을 경험할 수 있습니다. 물론 몇 가지 제한 사항이 있긴 합니다. (앱 아이콘이 바뀌거나 앱과 관련된 config가 바뀔 시엔 심사 필요) 언제나 덤벙대고 맨날 까먹는 저는 정말 유용하게 쓰는 기능입니다. 항상 노트북을 가지고 다니기 때문에 뭔가 오류가 생기면 아 이 부분 예외처리 깜빡했네? 수정하고 publish만 하면 끝이라 오류에 대한 심리적인 부담감이 엄청나게 줄었습니다.당연히 단점도 존재합니다.RN은 성능이 아무래도 딸린다던데...native 코드로 변환작업이 필수 ㅜㅜ태생이 네이티브가 아니라 생기는 해결하기 힘든(불가?) 단점이 있습니다. 저도 이 얘기를 수도 없이 들었습니다. 하이브리드 앱, 웹앱 등이 태생이 Swift와 Java 등의 Native를 따라갈 수 있을 리 만무했죠. RN이 세상에 나오고서도 하브, 웹앱보다는 빠르지만 네이티브와 비교하기엔 민망했다고 합니다. (사실 잘 모름) 그 이후에 주기적으로 성능 향상과 효율성에 대한 업데이트가 있었다는 정도..?  성능에 대해선 딱 이 정도의 정보만 알고 있었고 SOON을 만들기 시작했습니다. 당연히 SOON에는 많은 기능이 담겨있진 않았고 오류 투성이었지만 성능에 대해선 한 번도 이슈가 된 적은 없었습니다. 물론 기능이 계속 추가되고 규모가 커지다 보면 성능이 느려집니다. ms로 비교하여 테스트하지 않는 이상 유의미한 결과라고 생각되진 않았습니다.SOON의 핵심가치는 '빠르고 간편하게 단기 알바를 매칭 시켜준다'입니다. 이것저것 앱의 몸집이 아주 크게 늘어날 것 같지 않다고 판단했고, RN이 가장 최적이라 생각했습니다.(@CTO) 객관적으로 보면 아무리 RN이 나르고 긴다한들.. 성능적으로 보면 네이티브에 대적할 수 없을 것입니다. 하지만 언어를 고르고 서비스를 생각한다기보다 서비스 성격에 맞게 언어를 선택하는 것이 옳다고 생각합니다. 언어는 도구일 뿐이니까요.(참고자료 RN, swift의 성능 테스트)아무래도 javascript와 react에 대해 좀 친해야..RN이 아무리 쉽게 앱 개발을 할 수 있다지만, javascript와 React에 대해 조금(꽤 적당히 많이) 알아야 초기 진입 장벽이 많이 낮아질 것입니다. 이 두 가지를 잘 모르는 상태로 무턱대고 RN을 시작하면, RN보다 javascript, React를 공부하다가 포기하는 경우가 많을 겁니다.사라지지 않는 네이티브에 대한 두려움전 네이티브 코드와 환경을 전혀 모릅니다. 앱 등록 시 인증서가 필요하다는 것도 처음 알았고, 정말 아무것도 몰랐습니다. 초기에 러닝 커브가 꽤나 있었죠. Swift, Java를 공부한 것은 아니지만, 앱 등록/배포는 어떻게 진행되는지 하나의 앱이 존재하는 생태계 등 전반적으로 공부했습니다. 아직도 네이티브 관련 에러가 터지면 앱 개발자 분들을 찾아갑니다. 그렇게 하나하나 배워가고 있죠. 아직은 제가 혼자 해결할 수 없는 부분이 있습니다. RN에 좀 더 적응하면, 기초 앱 개발 정도는 따라 할 수 있도록 공부해야 할 것 같습니다. 이러다 앱 개발로 전향할 지도..Hello World...어쨌든! 장단점이 너무 뚜렷합니다. 새로운 서비스를 론칭 준비 중이면, 내 서비스에 RN이 어울리는지 고민 후 적용하시면 됩니다. 단, 이미 개발된 Native App이 존재하는데, 장기적 관점으로만 RN을 다시 개발하는 것은 강력히 비추합니다. 아무리 RN 개발자가 앱을 만들고 해도 누적된 Native의 경험치를 따라잡긴 힘들거든요. 진짜 어쨌든!앱 개발 관심도 있고, Native를 배울 엄두가 없는 분들.일단 Hello World 만 띄워보세요.아주 아주 재밌습니다.   앞으로 얼마나 더 RN을 하게 될지는 모르겠지만 웹 개발만 하던 제가 할 수 있는 영역이 굉장히 크게 늘어났다는 걸 느낍니다. 그래서 말인데.. 어떻게.. 내년 연봉협상에 반영이 될까요?#크몽 #개발자 #개발팀 #React #기술스택 #도입후기 #인사이트 #경험공유
조회수 1753

핀다(Finda)의 '따끈따끈한' 신입개발자 남은우:

핀다(Finda) 개발자 남은우님의 스타트업 생생LIFE 입니다원문은 링크를 통해 확인하실 수 있습니다!안녕하세요! 금융상품 추천서비스 '핀다'에서 프론트 엔드 웹 개발자로 근무하고 있는 남은우라고 합니다~ ^^저는 입사한지 6개월차가 되는 따끈따끈한 신입 개발자입니다. 올해 처음 웹 개발을 배우기 시작해서 인턴으로 들어오기까지 많은 것을 경험했는데요~ 제 이야기를 통해서 스타트업에서 일하기를 희망하시는 분들에게 조금이나마 도움이 되었으면 좋겠습니다. :)<핀다 개발자 남은우, 출처 : 핀다>스타트업에 지원하게 된 이유대학교 4학년 마지막 학기, 저는 아직 졸업하고 싶지 않은 철 없던 마음에... 휴학 할 명분(?)을 만들기 위해서 여기 저기 대외 활동을 찾고 있었어요. 그러던 중 우연히 지원한 소프트웨어 개발자 양성 과정에 운 좋게도 덜컥!! 합격해 버렸습니다. 6개월간 진행된 팀 프로젝트를 위해 배운 웹 개발에 흥미가 생겨서 본격적으로 개발 공부를 시작했는데요. 시간이 지날수록 개발 능력은 조금씩 늘어갔지만, 불안감도 나날이 커져갔습니다. 그 이유는 바로 '실무 경험'이 없었기 때문이었죠.제가 배운 개발 능력을 발휘할 수 있는 곳을 찾던 중에 스타트업 인턴즈를 만나게 되었습니다. 스턴에서 진행한 4주간의 코칭은 사회 초년생인 저에게 어찌보면 '치트키' 같은 시간이었어요. 자신에게 맞는 스타트업을 찾기 위해 3가지 핵심가치를 설정하거나, 면접 필수 요소, 기업분석 방법까지!!! 코치님의 여러가지 조언과 꿀팁들 덕분에 저에게 꼭 맞는 회사를 선택할 수 있었던 것 같아요.스타트업에서의 경험입사 첫째 날, 인턴임에도 불구하고 서비스 개발에 바로 투입(?) 되었습니다. 처음 제가 맡은 업무는 코드 리팩토링이었는데요. 이미 작성되었던 코드를 새로운 아키텍쳐로 변경하면서 구조에 대한 이해도를 높일 수 있었어요. 이 경험을 바탕으로 이후에 새롭게 추가되는 카테고리 개발이나 다른 채널들의 신규 소개 페이지 등을 빠르게 만들 수 있게 되었습니다.가장 좋았던 것은 커뮤니케이션이었는데요. 기획, 디자인, 개발의 유기적인 소통이 중요했기 때문에 개발자임에도 기획 미팅에 들어가거나, 디자인에 대한 의견을 낼 때가 많았습니다!! 팀원들 또한 열린 마음으로 저의 의견을 적극적으로 받아들여 주셨기 때문에, 새로운 아이디어를 낼 때가 많았던 것 같아요. 그리고 개발뿐만 아니라 여러 경험을 통해 서비스가 완성되는 과정을 지켜보는 것 또한 큰 자산이라고 생각했어요.<핀다 개발자 남은우, 출처 : 핀다>스타트업에 입사를 희망하는 분들에게스타트업은 대부분 바로 업무에 투입가능한 사람을 원하는 경우가 많아요. 따라서 지원하기 위해 어느 정도 준비가 필요하겠죠? 입사 후에 모든 일을 척척 수행할 수 있는 사람이면 좋겠지만, 전문적이지는 않더라도 자신이 지원하게 된 회사가 어떤 서비스를 제공하는지 파악하거나, 해당 서비스를 사용해보는 것이 좋아요.요새 드라마나 영화에 종종 스타트업 이야기들이 많이 나오는 것 같아요. 하지만 매스컴에 비춰지는 것이 자유분방하고 즐거운 모습뿐인 것 같아 조금 아쉬운 마음이 들기도 합니다. 회사에 따라 다르겠지만, 스타트업 특성상 조금 더 빠르게 달려야 할 때가 많거든요. 대신 남들보다 조금 더 빠르게 성장할 수 있다는 것!!! 입사를 희망하시는 여러분도 자신과 맞는 회사를 찾고, 꼭 특급 성장의 기회를 잡으셨으면 좋겠습니다.#핀다 #입사후기 #팀원소개 #팀원인터뷰 #팀원자랑 #기업문화 #조직문화
조회수 3662

개발자, 디자이너, 기획자의 온도차

 아마 가장 많은 분들이 생각하시기에 가장 걱정되는 부분이라고 생각이 듭니다.그래서 저 역시도 이 이야기를 하는 것에 좀 조심스럽습니다. 이야기는 바로 "업무를 대하는 개발자, 기획자, 디자이너 간의   온도차."입니다. (다시 한번 말씀드려요! 제가 사용한 방법이 백프로 모두에게 맞는 말은 아닙니다!!) 스타트업은 큰 기업처럼 디자인팀, 개발팀, 기획팀이 갈려서 서로의 팀장에게 허가를 받고, 기획을 시작하고, 개발을 시작하고, 디자인하는 그런 상하관계의 구조가 아닙니다. 서로서로들 비슷한 경력들과 환경에서 서비스를 제작하는 사람들이 많죠. 특히, 젊은 스타트업 기업들은 대학생들이나 대학원생 등 아직 본격적인 사회생활을 해보지 않은 인원들이 더 많을 것으로 알고 있습니다. 아시다시피, 다들 맞춰진 직무를 기반으로 개발자는 개발자의 생각과 계산에 따라서 일을 진행하고 있고, 기획자는 기한에 맞춰 예상했던 진행대로 일을 진행하고 싶어 하고, 디자이너들은 보다 다은 디자인으로 서비스를 보이려 다양한 자료들을 모으고 분석하여 제작자의 아이디어를 입혀 새로운 콘텐츠를 제작하려 노력합니다.문제는 서로가 서로의 일에 대하여 모른다는 것입니다. 스타트업의 팀원들 간의 커뮤니케이션은 마치 연애와 같아서 서로 이야기해주지 않으면 모를 수밖에 없고, 서로 어떻게 일을 하는지, 얼마나 시간이 걸릴 것이다 등 일정에 대한 공유나, 업무를 하는 절차를 이야기 해주짖 않으면, 원치 않는 감정의 골이 생기기 마련입니다. 이런 문제를 해결하기 위해, 기업은 매일매일 아침시간에 진행하는 Scrum이라든지, Jira, Taskworld, Trello 등 다양한 프로젝트 매니지먼트 툴을 사용하고, 스크럼 마스터나, 다양한 서비스를 제작해 보신 PM(Project Manager), 또는 PO(Product Owner)님들이 각부서의 현황들을 파악하고, 다양한 부서를 총괄하고 관리합니다.그러나, 기본적으로 국내 스타트업 상황은업무자들의 수가 절대적으로 부족하고,젊은 개발자나 디자이너 같은 경우는 생업(또는 학업)과 스타트업을 동시에 하는 인원이 많고,젊은 창업자들과 직원들의 경우, 프로젝트 경험이 없어 이러한 분업구조를  낯설어하고,개발자와 디자이너 역시 자신이 작업하는 프로젝트가 언제쯤 끝날지 가늠할 수 없는 상황이 생기고,적은 인원들이 많은 프로젝트를  진행하느라 예민한 구조가 되어 남을 이해하기 힘든 상황등의 다양한 이유들 때문에 각 직군 간의 갈등 상황이 큰 기업에 대비하여 많이 생기고 있습니다(물론 큰 기업도 문제가 없진 않다고 합니다.).이 전설의 짤을 보신적이 있으신 분들도 많으실듯... (출처: http://9gag.com/) 이러한 갈등 해결 방안은 다음에 더  디테일하게 설명드리도록 하고, 이번 글에서는 간단히 저가 생각하는 발전방향에 대하여  이야기해보도록 하겠습니다. 앞서 말씀드린 것과 같이, 스타트업 팀원들의 관계는 마치 연예와 비슷하다고 생각합니다. 말하지 않으면 모를 수밖에 없는 노릇이고, 말을 해줘도 이해할 수 없는 일들이 수두룩 합니다(그런 이유로 저는, 스타트업에서 근무하시는 분들은 서로의 업무에 대하여 어느 정도의 배경지식을 배우는 게 필요하다고 생각합니다.). 그럼에도 불구하고 우리는 항상 이야기를 해야 해요. 연애를 할 때도 말이 안 통해도 될 때까지 이야기하듯이. 스타트업에서의 업무는 끊임없이 피보팅을 진행하고, 하루하루 떠오르는 처리해야 할 일들이 생깁니다. 그리고, 그러한 변경사항들에 관하여  이야기할 때, 서로가 서로의 말을 이해해 주지 못한다면, 더 큰 갈등 상황들을 야기하기 마련이지요. 그러나, 만약 각 직군의 전문가들이 서로의 업무에 대한 배경이나, 아주 기본적이더라도 기초사항을 알고 있다면, 서로의 업무량에 대한 불만이 아무래도 적을  수밖에 없다고 생각합니다. 제가 스타트업을 진행할 당시를 말씀드리자면, 저는 창업 당시 기획자로서 서비스를 기획하고, 프로젝트를 관리하고, 투자 또는 공모전 등에 쓰일 기획서 등을 제작하는 업무를 주로 하였습니다. 디자인에 관하여는 무엇을 논할 수 있는 실력도 아니고, 개발에 관하여는 더더욱 그렇습니다. 그러므로 기획서를 작성할 때나, 어떤 계획을 할 때 “원하는 시간”을 개발자나 디자이너에게 요청하고, 그러한 요청 사안과 당사자들과의 이야기를 통해 조정하고 계획을 진행하는 것이 주  업무였습니다. 그리고 나름 생각하기에는 "개발이나 디자인을 하나도 모르는 사람이 일의 진행 정도를 스스로 보고 판단하고, 기한을 준다는 것은 올바르지 않다."라고 생각하여 아주 기초적일 수 있지만 웹 공부와 포토샵 일러스트 디자인 등의 디자인과 개발 툴 공부를 꾸준히 하면서 개발과 기획에서 어느 정도  서포트할 수 있는 실력을 기르기 위해 많은 시간을 투자했었습니다. 그리고 이러한 노력 덕분에 서로의 직군과 업무에 대한 고충을 이해할 수 있어서 많은 이점을 가질 수 있었지만, 그럼에도 불구하고, 자주자주 일이 딜레이 되는 상황이 발생하였고, 그러함에 따라서 개발자와 디자이너와 기획자들이 조금씩 소원해지고  섭섭해지는 상황이 발생하였던 것 같습니다. 그래서 하나 더 생각했던 것이, "일을 처음 시작하는 초보들에게도 바로 적용해서 업무에 도입할 수 없는 어려운 프로젝트 매니지먼트 툴이 아닌 서로의 작업현황이나, 상태 정도를 가늠할 수 있는 PM 툴을 만들어 보자." 하는 것이었습니다. 그래서 창업 당시 사용한 아주 간단한 툴이 있는데, 이 프로젝트 메니지 방법은 내일 이미지로 보여드리면서 설명드릴게요. :) 그리고 지금은 Taskworld나 Jira 같은 더 전문적인 툴을 사용하고 있지만, 해당 툴에 대한 전문전 지식이 아직 없는 분들은 엑셀 등으로 서로의 일을 정리해서 공유하는 것도 좋을 것 같네요! 기회가 되면, 요즘은 제가 어떤 식으로 툴을 사용하는지 설명하는 글도 적도록 하겠습니다! 마지막으로 긴 글을 세줄 정리하자면, 1. 개발자, 기획자, 디자이너는 달라요. x나 달라요.... 2. 다르면 잘 들어보고 뭘 하는지 아는 것이 중요하다고 생각합니다. 3. 그리고 서로가 어떤 일을 하고 있는지 현황을 파악할 수 있다면 더 좋겠죠?오늘도 읽어주셔서 감사합니다! 좋은 하루들 되세요:)#코인원 #블록체인 #기술기업 #암호화폐 #스타트업인사이트
조회수 2779

리디북스 웹뷰어의 이어보기를 개발하며

최근 리디북스에서는 판타지 연재물을 웹에서 바로 볼 수 있는 기능을 새롭게 선보였습니다.기존에는 별도의 앱을 설치하고 다운로드하는 과정을 거쳐야 했기에 연재물을 보는 사용성이 좋지 않았습니다만, 브라우저에서 바로 볼 수 있는 “웹뷰어” 기능을 제공함으로써 사용성을 높일 수 있었습니다.그리고 여기에 사용성을 더하기 위해 추가된 것이 이어보기 기능입니다. 짧아도 100화 이상, 길게는 1000화가 넘는 연재물에서 다음 화로의 매끄러운 연결은 매우 중요합니다. 혹은 잠시 읽기를 중단했다가 다시 돌아왔을 때, 어디까지 보고 있었는지를 빠르게 알려준다면 호흡을 이어서 작품에 더욱 몰입할 수 있을 것입니다.이어보기가 구현된 모습리디북스에 로그인되어 있다면, 이곳에서 확인하실 수 있습니다.이번 글은 이어보기 기능에 대한 개발 후기입니다. 요구 사항에 따라 여러 저장소 솔루션을 비교해 보았으며 최종적으로 Couchbase를 선택한 이유와 간단한 벤치마크 결과, 그리고 겪었던 문제를 공유합니다.요구 사항기획된 내용을 요약하니 아래와 같습니다.연재물의 가장 마지막에 읽은 화를 알 수 있다.보았던 모든 연재물에서 가장 마지막에 읽은 연재물을 알 수 있다.사용자가 본 모든 연재물 목록을 확인할 수 있다.이를 개발자 용어로 다시 풀어보면 아래와 같습니다.연재물을 읽을 때마다 연재물 ID와 화(episode) 정보를 기록한다.보았던 연재물을 최신순으로 정렬하여 가져온다.선택된 연재물의 마지막으로 읽은 화를 가져온다.목록에서 특정 연재물을 삭제한다.이어보기는 가장 마지막에 읽은 연재물을 기억하기 위해 작품을 열 때마다 해당 정보를 기록해야 합니다. 그런데 수십 화를 연달아서 보는 연재물의 특성상 내가 어디까지 읽었는지를 조회하는 것(read)보다 내가 읽은 연재물을 기록하는 것(write)이 더 많을 것으로 판단했습니다. 즉, 읽기보다 쓰기가 더 많을 것으로 예상했습니다.NoSQL을 쓰자대부분의 연산이 쓰기(write)와 관련된 이상, 어떤 저장공간을 사용할 것인지가 주된 관심사였습니다.특히 RDBMS와 NoSQL 사이에서 어떤 것을 사용할지 많은 고민과 테스트를 했고, 결국 아래와 같은 이유로 NoSQL을 사용하는 것이 적합하다고 판단했습니다.현재 사용 중인 MariaDB를 그대로 사용한다면 마스터에 부담을 줄 수 있다.별도로 MariaDB를 구성하더라도 운영 및 쓰기 분산하기가 여전히 어렵다.반면 NoSQL은 RDBMS 대비 확장(Scale out)이 간편하므로 운영에 대한 부담이 적다.단순 Key-Value 보관 용도면 충분하다.이어보기 데이터는 독립적인 성격을 가지고 있어서 다른 사용자 데이터와 JOIN을 할 필요가 없다.이어보기 데이터는 크리티컬한 트랜잭션이 필요하지 않다.MongoDB vs. Couchbase데이터를 영속적으로 유지해야 한다는 요구 사항을 충족하기 위해, Redis 등의 메모리만 사용하는 NoSQL은 제외했습니다. 물론 디스크에 기록할 수 있지만, 성능이 급감하기 때문에 실용적이지 못 합니다. 또한, 메모리 사이즈에 기반을 두기 때문에 Scale up 비용이 크고, 서비스 확장시 Scale out 빈도가 높습니다.그래서 MongoDB와 Couchbase를 비교 대상으로 했습니다. 둘 다 도큐먼트 기반의 NoSQL이고 확장이 용이합니다. 과거에는 MongoDB가 Write lock 사용에 있어서 문제점이 있었지만, 최근 버전에서는 문제가 되지 않습니다.[1] 둘 다 기업용 서비스 및 충분한 부가 기능들을 제공하므로 선택하기 어려웠지만, 최종적으로 아래와 같은 이유로 Couchbase(CE)를 선택했습니다.1. 이미 사내에서 다른 서비스에 사용되고 있습니다.가장 중요한 요인이었습니다. 더 좋은 솔루션이 있더라도 어디까지나 서버 스택을 늘리는 것 이상의 효용이 있는지를 따져보아야 합니다. 이미 사용하고 있는 솔루션이 있다면, 검증이 되었을 뿐만 아니라 개발 및 운영 경험도 활용할 수 있습니다.2. 이어보기는 복잡한 쿼리(Query)가 필요 없습니다.이어보기에서 사용할 쿼리는 간단하기 때문에 Couchbase의 뷰(View)만으로 충분했습니다.Couchbase, 실제 성능은 어떨까?테스트를 하기 전 우리가 어떤 식으로 사용할 것인지 정리해야 합니다. 애플리케이션 액세스 패턴이나 동시성 문제, 데이터 구조화 등을 파악하고 그에 맞는 테스트를 진행해야 합니다. 이번 이어보기는 쓰기 연산이 보다 많기 때문에 이로 인한 뷰의 인덱싱(Indexing)에 초점을 맞추고 테스트를 진행했습니다.성능을 위협하는 요소들View IndexingCouchbase는 MapReduce를 이용하여 뷰를 제공합니다. MapReduce는 일반적으로 리소스를 많이 소모하는 동작입니다. 그래서 Couchbase는 버킷의 새로 갱신된 데이터만 인덱싱하는 Incremental MapReduce라는 기법을 적용해서 리소스 소모를 줄였다고 합니다.[2] 하지만 해당 작업으로 인한 부하는 여전히 발생합니다.Auto CompactionCouchbase는 데이터와 인덱스를 디스크에 데이터를 저장할 때 파일에 추가하기(Append) 모드로만 쓰기를 수행합니다.[3] 그리고 오래되고 불필요한 데이터들은 추후 한꺼번에 정리하는데, 이는 디스크 쓰기 성능을 최대화하기 위함입니다.그런데 이렇게 추가만 하게 되면 오래된 정보들은 파일의 앞에 쌓이게 됩니다. 그리고 사용하지 않게 된 데이터도 남아있습니다. 이를 주기적으로 정리해서 최적화하는 작업을 Auto Compaction이라고 합니다. 뷰의 인덱스는 디스크에 존재하기 때문에 디스크 작업이 있으면 인덱싱에 영향을 미치게 됩니다.성능 테스트Couchbase는 기본적으로 5,000ms마다 Index를 업데이트합니다.[2] 그리고 데이터를 비동기적으로 응답합니다. 비동기는 응답속도를 빠르게 하지만, 데이터 불일치가 발생할 수 있습니다. 데이터 불일치가 신경 쓰이고 이 시간이 길다고 생각되면, stale 옵션을 지정해서 뷰의 인덱스를 업데이트할 수 있습니다.이어보기는 뷰가 간단하기 때문에 응답시간에 큰 문제가 없을 것으로 예상하고 stale 옵션을 꺼두었습니다. 이 옵션은 뷰를 조회했을 때 버킷의 변경사항에 따라 뷰를 인덱싱하고 데이터를 응답합니다. 하지만 예상한 것과 같이 실제로도 응답시간이 짧은지 확인할 필요가 있습니다. 그래서 다음과 같이 테스트를 진행했습니다.테스트 환경은 아래와 같이 2-tier로 준비하고 요청을 늘려가면서 RPS를 측정했습니다.서버 구성OS: Ubuntu 14.04Application: Couchbase Server (CE) 3.1.3클라이언트 구성클라이언트 1개에서 50개의 세션으로 요청10만 사용자 가정책은 1만개의 책중 랜덤으로 선택됨요청의 70%는 책 읽기(Bucket Write)요청의 30%는 연재물의 마지막에 읽은 책 가져오기(View Read)그래프 분석성능 테스트 주요 지표RPS : Response Per SecondSP : Saturation PointBuckle zone : 시스템 과부하로 인해 내부 자원이 서로 경쟁상태나 적체 상태가 심해지기 때문에 최대 처리량보다 더 떨어지는 경우가 발생함성능테스트 결과그래프를 보면 요청이 늘어남에 따라 RPS가 선형으로 증가하지만, SP인 8,000 RPS에 도달하고 나서 Buckle zone에서 7,000 RPS로 수렴하고 있습니다. 물론 1개의 클라이언트에서 세션을 생성해서 테스트를 진행했기 때문에 서버의 성능 부족이 아닌 클라이언트의 병목 현상이 원인일 수 있습니다. 또한 JMeter나 다른 부하 테스트 툴을 사용하지 않고 간략하게 만든 테스트 툴을 사용하였기 때문에 수치가 부정확할 수 있습니다. 그러나 어디에서 병목이 있었든 현재 이 이상의 성능이 필요하지 않기 때문에 테스트 결과에 만족할 수 있었습니다.이어보기 배포 후모바일 브라우저 캐시 문제이어보기 기능을 배포하자마자 당일 저녁 이슈 하나를 접수했습니다. 아이패드와 PC를 번갈아 이용할 경우 이어보기 데이터가 맞지 않다는 것이었습니다.데이터를 쌓을 때 모든 이력을 기록하지는 않았지만, 다행히도 Couchbase에 이용기기와 시간은 기록하였기 때문에 이를 바탕으로 디버깅을 할 수 있었습니다. (서비스 초기라 할지라도 최대한 많은 이력을 남기는 것이 중요함을 다시 느꼈습니다)원인은 아이패드의 멀티태스킹으로 인한 캐시 소멸이었습니다. 아이패드 브라우저의 캐시가 소멸되면서 마지막으로 열어두었던 페이지가 강제적으로 리로딩되었고, 이때 의도치 않게 마지막 위치 정보가 덮어씌워진 것입니다.이 문제는 기술적으로 해결이 쉽지 않아 결국 기획을 수정하게 되었습니다. 사용자가 해당 책을 읽었다고 판단하는 기준이 “페이지를 열어본 즉시”였다면, 이를 “페이지를 열고 수 초 이상을 유지”하는 것으로 기준을 변경하였습니다. 물론 근본적인 해결책은 아니었지만, 실제 사용에는 지장이 없는 합리적인 해결책이라고 생각합니다.Key 구조의 변경 및 동시성 문제Couchbase는 높은 성능을 위해 메타데이터(Key + @)를 모두 메모리에 적재하는 특징이 있어서, Document 하나가 평균 350Byte를 차지하고 있었습니다. 따라서 현재 상태로 1000만개의 데이터를 저장할 경우 최소 3.5G의 메모리를, 2개의 사본(Replica)를 유지할 경우 약 10.5G의 메모리를 사용하게 될 것으로 예상되었고 이는 큰 부담으로 다가왔습니다.처음에는 단순히 “사용자ID_연재물ID” 형태의 Key를 사용하였지만, 보다 빠르게 증가할 것으로 예상되는 것은 사용자보다 연재물 이었으므로 아래와 같이 Key값을 변경하여 메모리 사용량을 크게 줄였습니다.// U_id : S_id 조합을 사용하면 Key가 엄청 많아진다. // 그래서 사용자당 Key를 100개로 제한하도록 한다. Count = 100 Key = '사용자ID' + ('연재물ID' % Count) 그런데 이렇게 Key 구조를 변경하였더니, 간단한 업데이트 동작임에도 불구하고 정상적으로 수행되지 않는 경우가 빈번하게 발생하였습니다. 이유는 낙관적 동시성(Optimistic concurrency) 모델의 특징 때문이었는데, Couchbase는 명시적인 잠금 이외에도 “Check and Set(CAS)”이라는 기능을 제공하고 있었습니다.공식 문서의 예제를 참고하여 아래와 같이 로직을 수정한 뒤로는 다행히도 동시성 문제가 아직까지 발생하지 않고 있습니다.boolean updateUsingCas(key, value) {  for (tryCount = 0; tryCount < MAX>    orgValue, cas = getValueAndCas(key)           // Update the original value.     // newValue = ... if setValueWithCas(key, newValue, cas)      return SUCCESS sleep(0.1) // 부하를 줄이기 위해  }  return FAIL } 맺으며동작하는 서비스에 새로운 기능을 추가한다는 것은 어려운 일입니다. 특히 새로운 데이터 스토리지를 필요로 하는 일이라면 더더욱 어렵다고 생각합니다. 그리고 그럴 때일수록 설계에 많은 시간을 들여야 한다는 것을 느꼈습니다. 설계 초기에는 RDBMS의 샤딩까지 고려하였지만, 요구 사항을 구체화할수록 단순 Key-Value로도 같은 문제를 해결할 수 있음을 깨달았기 때문입니다.또한, 서비스 개발에 있어서 어려운 문제를 마주했을 때 기술적으로만 접근할 것이 아니라 고객이 정말 원하는 것이 무엇인지를 고민하여 기획적으로 해결하는 능력도 중요하다는 것을 실감하였습니다.마지막으로 Couchbase는 현재로서도 꽤 좋고 앞으로도 많은 발전이 기대되는 NoSQL입니다. 도입을 고민하시던 분들께 조금이라도 도움이 되었기를 바랍니다.참고자료[1] MongoDB - Concurrency[2] Couchbase - Views Operations[3] Couchbase - File write#리디북스 #개발 #개발자 #서버개발 #서비스개발 #고객중심 #기능개발 #Couchbase #인사이트 #개발후기
조회수 1170

AWS Batch 사용하기

OverviewAWS Batch는 배치 컴퓨팅 작업을 효율적으로 실행할 수 있게 도와줍니다. 배치 작업량과 리소스 요청을 기반으로 최적의 리소스 수량 및 인스턴스 유형을 동적으로 프로비져닝합니다. AWS Batch에서는 별도의 관리가 필요 없기 때문에 문제 해결에 집중할 수 있습니다. 별도의 추가 비용은 없습니다. 배치 작업을 저장 또는 실행할 목적으로 생성된 AWS 리소스(인스턴스 등)에 대해서만 비용을 지불하면 됩니다. 이번 포스팅에서는 간단한 튜토리얼로 AWS Batch 사용 방법을 크게 11개의 Step으로 알아보겠습니다. 이렇게 진행하겠습니다.AWS에서 제공하는 Dockerfile, fetch&run 스크립트 및 myjob.sh 다운로드Dockerfile를 이용하여 fetch&run 스크립트를 포함한 Docker 이미지 생성생성된 Docker 이미지를 ECR(Amazon Elastic Container Registry)로 푸쉬간단한 샘플 스크립트(myjob.sh)를 S3에 업로드IAM에 S3를 접속 할 수 있는 ECS Task role 등록Compute environments 생성Job queues 생성ECR을 이용하여 Job definition 생성Submit job을 통해 S3에 저장된 작업 스크립트(myjob.sh)를 실행하기결과 확인 STEP1. AWS에서 제공하는 Dockerfile, fetch&run 스크립트 및 myjob.sh 다운로드AWS Batch helpers페이지에 접속합니다.    2. /fetch-and-run/에서 Dockerfile, fetchandrun.sh, myjob.sh 다운로드합니다.STEP2. Dockerfile을 이용하여 fetch&run 스크립트를 포함한 Docker 이미지 생성Dockerfile을 이용해서 Docker 이미지를 빌드합니다.잠시 Dockerfile의 내용을 살펴보겠습니다.FROM amazonlinux:latestDocker 공식 Repository에 있는 amazonlinux 의 lastest 버젼으로 빌드RUN yum -y install which unzip aws-cliRUN을 통해 이미지 빌드 시에 yum -y install which unzip aws-cli를 실행ADD fetch_and_run.sh /usr/local/bin/fetch_and_run.shADD를 통해 Dockerfile과 같은 디렉토리에 있는 fetch_and_run.sh를 /usr/local/bin/fetch_and_run.sh에 복사 WORKDIR /tmp컨테이너가 동작할 때 /tmp를 기본 디렉토리로 설정USER nobody컨테이너 실행 시 기본 유저 설정 ENTRYPOINT [“/usr/local/bin/fetch_and_run.sh”]컨테이너 실행 시 /usr/local/bin/fetch_and_run.sh를 call shell에 docker 명령을 통해 이미지 생성shell : docker build -t fetch_and_run . 실행하면 아래와 같은 결과가 출력됩니다.[ec2-user@AWS_BRANDI_STG fetch-and-run]$ docker build -t fetch_and_run . Sending build context to Docker daemon 8.192kB Step 1/6 : FROM amazonlinux:latest latest: Pulling from library/amazonlinux 4b92325dc37b: Pull complete Digest: sha256:9ee13e494b762db41b9db92a200f6784b78da5ac3b0f974fb1c38feb7f636474 Status: Downloaded newer image for amazonlinux:latest ---> 81bb3e78db3d Step 2/6 : RUN yum -y install which unzip aws-cli ---> Running in 1f5293a2294d Loaded plugins: ovl, priorities Resolving Dependencies --> Running transaction check ---> Package aws-cli.noarch 0:1.14.9-1.48.amzn1 will be installed --> Processing Dependency: python27-jmespath = 0.9.2 for package: aws-cli-1.14.9-1.48.amzn1.noarch --> Processing Dependency: python27-botocore = 1.8.13 for package: aws-cli-1.14.9-1.48.amzn1.noarch --> Processing Dependency: python27-rsa >= 3.1.2-4.7 for package: aws-cli-1.14.9-1.48.amzn1.noarch --> Processing Dependency: python27-futures >= 2.2.0 for package: aws-cli-1.14.9-1.48.amzn1.noarch --> Processing Dependency: python27-docutils >= 0.10 for package: aws-cli-1.14.9-1.48.amzn1.noarch --> Processing Dependency: python27-colorama >= 0.2.5 for package: aws-cli-1.14.9-1.48.amzn1.noarch --> Processing Dependency: python27-PyYAML >= 3.10 for package: aws-cli-1.14.9-1.48.amzn1.noarch --> Processing Dependency: groff for package: aws-cli-1.14.9-1.48.amzn1.noarch --> Processing Dependency: /etc/mime.types for package: aws-cli-1.14.9-1.48.amzn1.noarch ---> Package unzip.x86_64 0:6.0-4.10.amzn1 will be installed ---> Package which.x86_64 0:2.19-6.10.amzn1 will be installed --> Running transaction check ---> Package groff.x86_64 0:1.22.2-8.11.amzn1 will be installed --> Processing Dependency: groff-base = 1.22.2-8.11.amzn1 for package: groff-1.22.2-8.11.amzn1.x86_64 ---> Package mailcap.noarch 0:2.1.31-2.7.amzn1 will be installed ---> Package python27-PyYAML.x86_64 0:3.10-3.10.amzn1 will be installed --> Processing Dependency: libyaml-0.so.2()(64bit) for package: python27-PyYAML-3.10-3.10.amzn1.x86_64 ---> Package python27-botocore.noarch 0:1.8.13-1.66.amzn1 will be installed --> Processing Dependency: python27-dateutil >= 2.1 for package: python27-botocore-1.8.13-1.66.amzn1.noarch ---> Package python27-colorama.noarch 0:0.2.5-1.7.amzn1 will be installed ---> Package python27-docutils.noarch 0:0.11-1.15.amzn1 will be installed --> Processing Dependency: python27-imaging for package: python27-docutils-0.11-1.15.amzn1.noarch ---> Package python27-futures.noarch 0:3.0.3-1.3.amzn1 will be installed ---> Package python27-jmespath.noarch 0:0.9.2-1.12.amzn1 will be installed --> Processing Dependency: python27-ply >= 3.4 for package: python27-jmespath-0.9.2-1.12.amzn1.noarch ---> Package python27-rsa.noarch 0:3.4.1-1.8.amzn1 will be installed --> Processing Dependency: python27-pyasn1 >= 0.1.3 for package: python27-rsa-3.4.1-1.8.amzn1.noarch --> Processing Dependency: python27-setuptools for package: python27-rsa-3.4.1-1.8.amzn1.noarch --> Running transaction check ---> Package groff-base.x86_64 0:1.22.2-8.11.amzn1 will be installed ---> Package libyaml.x86_64 0:0.1.6-6.7.amzn1 will be installed ---> Package python27-dateutil.noarch 0:2.1-1.3.amzn1 will be installed --> Processing Dependency: python27-six for package: python27-dateutil-2.1-1.3.amzn1.noarch ---> Package python27-imaging.x86_64 0:1.1.6-19.9.amzn1 will be installed --> Processing Dependency: libjpeg.so.62(LIBJPEG_6.2)(64bit) for package: python27-imaging-1.1.6-19.9.amzn1.x86_64 --> Processing Dependency: libjpeg.so.62()(64bit) for package: python27-imaging-1.1.6-19.9.amzn1.x86_64 --> Processing Dependency: libfreetype.so.6()(64bit) for package: python27-imaging-1.1.6-19.9.amzn1.x86_64 ---> Package python27-ply.noarch 0:3.4-3.12.amzn1 will be installed ---> Package python27-pyasn1.noarch 0:0.1.7-2.9.amzn1 will be installed ---> Package python27-setuptools.noarch 0:36.2.7-1.33.amzn1 will be installed --> Processing Dependency: python27-backports-ssl_match_hostname for package: python27-setuptools-36.2.7-1.33.amzn1.noarch --> Running transaction check ---> Package freetype.x86_64 0:2.3.11-15.14.amzn1 will be installed ---> Package libjpeg-turbo.x86_64 0:1.2.90-5.14.amzn1 will be installed ---> Package python27-backports-ssl_match_hostname.noarch 0:3.4.0.2-1.12.amzn1 will be installed --> Processing Dependency: python27-backports for package: python27-backports-ssl_match_hostname-3.4.0.2-1.12.amzn1.noarch ---> Package python27-six.noarch 0:1.8.0-1.23.amzn1 will be installed --> Running transaction check ---> Package python27-backports.x86_64 0:1.0-3.14.amzn1 will be installed --> Finished Dependency Resolution Dependencies Resolved ================================================================================ Package                              Arch   Version            Repository                                                                           Size ================================================================================ Installing:  aws-cli                              noarch 1.14.9-1.48.amzn1  amzn-main 1.2 M  unzip                                x86_64 6.0-4.10.amzn1     amzn-main 201 k  which                                x86_64 2.19-6.10.amzn1    amzn-main  41 k  Installing for dependencies:  freetype                             x86_64 2.3.11-15.14.amzn1 amzn-main 398 k  groff                                x86_64 1.22.2-8.11.amzn1  amzn-main 1.3 M  groff-base                           x86_64 1.22.2-8.11.amzn1  amzn-main 1.1 M  libjpeg-turbo                        x86_64 1.2.90-5.14.amzn1  amzn-main 144 k  libyaml                              x86_64 0.1.6-6.7.amzn1    amzn-main  59 k  mailcap                              noarch 2.1.31-2.7.amzn1   amzn-main  27 k  python27-PyYAML                      x86_64 3.10-3.10.amzn1    amzn-main 186 k  python27-backports                   x86_64 1.0-3.14.amzn1     amzn-main 5.0 k  python27-backports-ssl_match_hostname                                       noarch 3.4.0.2-1.12.amzn1 amzn-main  12 k  python27-botocore                    noarch 1.8.13-1.66.amzn1  amzn-main 4.1 M  python27-colorama                    noarch 0.2.5-1.7.amzn1    amzn-main  23 k  python27-dateutil                    noarch 2.1-1.3.amzn1      amzn-main  92 k  python27-docutils                    noarch 0.11-1.15.amzn1    amzn-main 1.9 M  python27-futures                     noarch 3.0.3-1.3.amzn1    amzn-main  30 k  python27-imaging                     x86_64 1.1.6-19.9.amzn1   amzn-main 428 k  python27-jmespath                    noarch 0.9.2-1.12.amzn1   amzn-main  46 k  python27-ply                         noarch 3.4-3.12.amzn1     amzn-main 158 k  python27-pyasn1                      noarch 0.1.7-2.9.amzn1    amzn-main 112 k  python27-rsa                         noarch 3.4.1-1.8.amzn1    amzn-main  80 k  python27-setuptools                  noarch 36.2.7-1.33.amzn1  amzn-main 672 k  python27-six                         noarch 1.8.0-1.23.amzn1   amzn-main  31 k Transaction Summary ================================================================================ Install 3 Packages (+21 Dependent packages) Total download size: 12 M Installed size: 51 M Downloading packages: -------------------------------------------------------------------------------- Total 1.0 MB/s | 12 MB 00:12 Running transaction check Running transaction test Transaction test succeeded  Running transaction   Installing : python27-backports-1.0-3.14.amzn1.x86_64                    1/24   Installing : python27-backports-ssl_match_hostname-3.4.0.2-1.12.amzn1    2/24   Installing : python27-setuptools-36.2.7-1.33.amzn1.noarch                3/24   Installing : python27-colorama-0.2.5-1.7.amzn1.noarch                    4/24   Installing : freetype-2.3.11-15.14.amzn1.x86_64                          5/24   Installing : libyaml-0.1.6-6.7.amzn1.x86_64                              6/24   Installing : python27-PyYAML-3.10-3.10.amzn1.x86_64                      7/24   Installing : mailcap-2.1.31-2.7.amzn1.noarch                             8/24   Installing : python27-ply-3.4-3.12.amzn1.noarch                          9/24   Installing : python27-jmespath-0.9.2-1.12.amzn1.noarch                  10/24   Installing : python27-futures-3.0.3-1.3.amzn1.noarch                    11/24   Installing : python27-six-1.8.0-1.23.amzn1.noarch                       12/24   Installing : python27-dateutil-2.1-1.3.amzn1.noarch                     13/24   Installing : groff-base-1.22.2-8.11.amzn1.x86_64                        14/24   Installing : groff-1.22.2-8.11.amzn1.x86_64                             15/24   Installing : python27-pyasn1-0.1.7-2.9.amzn1.noarch                     16/24   Installing : python27-rsa-3.4.1-1.8.amzn1.noarch                        17/24   Installing : libjpeg-turbo-1.2.90-5.14.amzn1.x86_64                     18/24   Installing : python27-imaging-1.1.6-19.9.amzn1.x86_64                   19/24   Installing : python27-docutils-0.11-1.15.amzn1.noarch                   20/24   Installing : python27-botocore-1.8.13-1.66.amzn1.noarch                 21/24   Installing : aws-cli-1.14.9-1.48.amzn1.noarch                           22/24   Installing : which-2.19-6.10.amzn1.x86_64                               23/24   Installing : unzip-6.0-4.10.amzn1.x86_64                                24/24   Verifying  : libjpeg-turbo-1.2.90-5.14.amzn1.x86_64                      1/24   Verifying  : groff-1.22.2-8.11.amzn1.x86_64                              2/24   Verifying  : unzip-6.0-4.10.amzn1.x86_64                                 3/24   Verifying  : python27-pyasn1-0.1.7-2.9.amzn1.noarch                      4/24   Verifying  : groff-base-1.22.2-8.11.amzn1.x86_64                         5/24   Verifying  : aws-cli-1.14.9-1.48.amzn1.noarch                            6/24   Verifying  : python27-six-1.8.0-1.23.amzn1.noarch                        7/24   Verifying  : python27-dateutil-2.1-1.3.amzn1.noarch                      8/24   Verifying  : python27-docutils-0.11-1.15.amzn1.noarch                    9/24   Verifying  : python27-PyYAML-3.10-3.10.amzn1.x86_64                     10/24   Verifying  : python27-botocore-1.8.13-1.66.amzn1.noarch                 11/24   Verifying  : python27-futures-3.0.3-1.3.amzn1.noarch                    12/24   Verifying  : python27-ply-3.4-3.12.amzn1.noarch                         13/24   Verifying  : python27-jmespath-0.9.2-1.12.amzn1.noarch                  14/24   Verifying  : mailcap-2.1.31-2.7.amzn1.noarch                            15/24   Verifying  : python27-backports-ssl_match_hostname-3.4.0.2-1.12.amzn1   16/24   Verifying  : libyaml-0.1.6-6.7.amzn1.x86_64                             17/24   Verifying  : python27-rsa-3.4.1-1.8.amzn1.noarch                        18/24   Verifying  : freetype-2.3.11-15.14.amzn1.x86_64                         19/24   Verifying  : python27-colorama-0.2.5-1.7.amzn1.noarch                   20/24   Verifying  : python27-setuptools-36.2.7-1.33.amzn1.noarch               21/24   Verifying  : which-2.19-6.10.amzn1.x86_64                               22/24   Verifying  : python27-imaging-1.1.6-19.9.amzn1.x86_64                   23/24   Verifying  : python27-backports-1.0-3.14.amzn1.x86_64                   24/24 Installed:   aws-cli.noarch 0:1.14.9-1.48.amzn1        unzip.x86_64 0:6.0-4.10.amzn1   which.x86_64 0:2.19-6.10.amzn1   Dependency Installed:   freetype.x86_64 0:2.3.11-15.14.amzn1   groff.x86_64 0:1.22.2-8.11.amzn1   groff-base.x86_64 0:1.22.2-8.11.amzn1   libjpeg-turbo.x86_64 0:1.2.90-5.14.amzn1   libyaml.x86_64 0:0.1.6-6.7.amzn1   mailcap.noarch 0:2.1.31-2.7.amzn1   python27-PyYAML.x86_64 0:3.10-3.10.amzn1   python27-backports.x86_64 0:1.0-3.14.amzn1   python27-backports-ssl_match_hostname.noarch 0:3.4.0.2-1.12.amzn1   python27-botocore.noarch 0:1.8.13-1.66.amzn1   python27-colorama.noarch 0:0.2.5-1.7.amzn1   python27-dateutil.noarch 0:2.1-1.3.amzn1   python27-docutils.noarch 0:0.11-1.15.amzn1   python27-futures.noarch 0:3.0.3-1.3.amzn1   python27-imaging.x86_64 0:1.1.6-19.9.amzn1   python27-jmespath.noarch 0:0.9.2-1.12.amzn1   python27-ply.noarch 0:3.4-3.12.amzn1   python27-pyasn1.noarch 0:0.1.7-2.9.amzn1   python27-rsa.noarch 0:3.4.1-1.8.amzn1   python27-setuptools.noarch 0:36.2.7-1.33.amzn1   python27-six.noarch 0:1.8.0-1.23.amzn1   Complete! Removing intermediate container 1f5293a2294d  ---> 5502efa481ce Step 3/6 : ADD fetch_and_run.sh /usr/local/bin/fetch_and_run.sh  ---> 1b69173e586f Step 4/6 : WORKDIR /tmp Removing intermediate container a69678c65ee7  ---> 8a560dd25401 Step 5/6 : USER nobody  ---> Running in e063ac6e6fdb Removing intermediate container e063ac6e6fdb  ---> e5872fd44234 Step 6/6 : ENTRYPOINT ["/usr/local/bin/fetch_and_run.sh"]  ---> Running in e25af9aa5fdc Removing intermediate container e25af9aa5fdc  ---> dfca872de0be Successfully built dfca872de0be Successfully tagged awsbatch-fetch_and_run:latest docker images 명령으로 새로운 로컬 repository를 확인할 수 있습니다.shell : docker images [ec2-user@AWS_BRANDI_STG fetch-and-run]$ docker images REPOSITORY TAG IMAGE ID CREATED SIZE fetch_and_run latest dfca872de0be 2 minutes ago 253MB amazonlinux              latest              81bb3e78db3d        2 weeks ago         165MB STEP3. ECR에서 repository 생성아래는 ECR 초기 화면입니다.fetch_and_run이란 이름으로 Repository 생성합니다. 3. Repository 생성이 완료되었습니다.STEP4. ECR로 빌드된 이미지를 pushECR에 docker login후 빌드된 Docker 이미지에 태그합니다. shell : aws ecr get-login --no-include-email --region ap-northeast-2 빌드된 docker 이미지에 태그하세요.shell : docker tag fetch_and_run:latest 000000000000.dkr.ecr.ap-northeast-2.amazonaws.com/fetch_and_run:latest 태그된 docker 이미지를 ECR에 push합니다.shell: docker push 000000000000.dkr.ecr.ap-northeast-2.amazonaws.com/fetch_and_rrun:latest 아래는 ECR fetch_and_run Repository에 푸쉬된 Docker 이미지입니다.STEP5. 간단한 샘플 스크립트(myjob.sh)를 S3에 업로드아래는 간단한 myjob.sh 스크립트입니다.#!/bin/bash date echo "Args: $@" env echo "This is my simple test job!." echo "jobId: $AWS_BATCH_JOB_ID" sleep $1 date echo "bye bye!!" 위의 myjob.sh를 S3에 업로드합니다.shell : aws s3 cp myjob.sh s3:///myjob.sh STEP6. IAM에 S3를 접속할 수 있는 ECS Task role 등록Role 등록 화면에서 Elastic Container Service 선택 후, Elastic Container Service Task를 선택합니다.AmazonS3ReadOnlyAccess Policy를 선택합니다.아래 이미지는 Role에 등록 하기 전 리뷰 화면입니다.Role에 AmazonS3ReadOnlyAccess가 등록된 것을 확인합니다.STEP7. Compute environments 생성AWS Batch 콘솔에서 Compute environments를 선택하고, Create environment 선택합니다.Compute environment type은 Managed와 Unmanaged 두 가지를 선택할 수 있습니다. Managed는 AWS에서 요구사항에 맞게 자원을 관리해주는 것이고, Unmanaged는 직접 자원을 관리해야 합니다. 여기서는 Managed를 선택하겠습니다.Compute environment name을 입력합니다.Service Role을 선택합니다. 기존 Role을 사용하거나 새로운 Role을 생성할 수 있습니다. 새 Role을 생성하면 필수 역할 (AWSBatchServiceRole)이 생성됩니다.Instnace Role을 선택합니다. 기존 Role을 사용하거나 새로운 Role을 생성할 수 있습니다. 새 Role을 생성하면 필수 역할(ecsInstanceRole)이 생성됩니다.EC2 key pair에서 기존 EC2 key pair를 선택합니다. 이 key pair를 사용하여 SSH로 인스턴스에 접속할 수 있지만 이번 글의 예제에서는 선택하지 않겠습니다.Configure your compute resources Provisioning Model은 On-Demand와 Spot이 있습니다. 차이점은 Amazon EC2 스팟 인스턴스를 참고해주세요. 여기서는 On-Demand를 선택합니다.Allowed instance types에서는 시작 인스턴스 유형을 선택합니다. optimal을 선택하면 Job queue의 요구에 맞는 인스턴스 유형을 (최신 C, M, R 인스턴스 패밀리 중) 자동으로 선택합니다. 여기서는 optimal을 선택하겠습니다.Minimum vCPUs는 Job queue 요구와 상관없이 Compute environments에 유지할 vCPU 최소 개수입니다. 0을 입력해주세요.Desired vCPUs는 Compute environment에서 시작할 EC2 vCPU 개수입니다. Job queue 요구가 증가하면 필요한 vCPU를 Maximum vCPUs까지 늘리고 요구가 감소하면 vCPU 수를 Minimum vCPUs까지 줄이고 인스턴스를 제거합니다. 0을 입력해주세요.Maximum vCPUs는 Job queue 요구와 상관없이 Compute environments에서 확장할 수 있는 EC2 vCPU 최대 개수입니다. 여기서는 256을 입력합니다.Enable user-specified Ami ID는 사용자 지정 AMI를 사용하는 옵션입니다. 여기서는 사용하지 않겠습니다.Networking VPC Id 인스턴스를 시작할 VPC를 선택합니다.Subnet을 선택합니다.Security groups를 선택합니다.그리고 EC2 tags를 지정하여 생성된 인스턴스가 이름을 가질 수 있게 합니다. Key : Name, Value : AWS Batch InstanceCreate을 클릭해 Compute environment를 생성합니다.아래 이미지는 생성된 Compute environment입니다.STEP8. Job queues 생성AWS Batch 콘솔에서 Job queues - Create queue를 선택합니다.Queue name을 입력합니다.Priority는 Job queue의 우선순위를 입력합니다. 우선순위가 1인 작업은 우선순위가 5인 작업보다 먼저 일정이 예약됩니다. 여기서는 5를 입력하겠습니다.Enable Job queue가 체크되어 있어야 job을 등록할 수 있습니다.Select a compute environment에서 Job queue와 연결될 Compute environment을 선택합니다. 최대 3개의 Compute environment를 선택할 수 있습니다.생성된 Job queue, Status가 VALID면 사용 가능합니다.STEP9. ECR을 이용하여 Job definition 생성AWS Batch 콘솔에서 Job definitions - Create를 선택합니다.Job definition name을 입력하고 이전 작업에서 만들 IAM Role을 선택하세요, 그리고 ECR Repository URI를 입력합니다. 000000000000.dkr.ecr.ap-northeast-2.amazonaws.com/fetch_and_runCommand 필드는 비워둡시다.vCPUs는 컨테이너를 위해 예약할 vCPU의 수, Memory(Mib)는 컨테이너에 제공할 메모리의 제한, Job attempts는 작업이 실패할 경우 다시 시도하는 최대 횟수, Execution timeout은 실행 제한 시간, Ulimits는 컨테이너에 사용할 사용자 제한 값입니다. 여기서는 vCPUs는 1, Memory(MiB)는 512, Job Attempts는 1로 설정, Execution timeout은 기본값인 100 그리고 Limits는 설정하지 않습니다.vCPUs: 컨테이너를 위해 예약할 vCPU의 개수Memory(Mib): 컨테이너에 제공할 메모리의 제한Jop attempts: 작업이 실패할 경우 다시 시도하는 최대 횟수Execution timeout: 실행 제한 시간Ulimits: 컨테이너에 사용할 사용자 제한 값User는 기본값인 nobody로 선택 후, Create job definition을 선택합니다.Job definitions에 Job definition이 생성된 것을 확인할 수 있습니다.STEP10. Submit job을 통해 S3에 저장된 작업 스크립트(myjob.sh)를 실행하기AWS Batch 콘솔에서 Jobs를 선택합니다. Job을 실행할 Queue를 선택하고 Submit job을 선택합니다.Job run-time1)Job name을 입력합니다.2)Job definition을 선택합니다.3)실행될 Job queue를 선택합니다.Environment Job Type을 선택하는 부분에서는 Single을 선택합니다. Array 작업에 대한 자세한 내용은 어레이 작업 페이지를 참고해주세요.Job depends on은 선택하지 않습니다.자세한 내용은 작업 종속성 페이지를 참고해주세요.Environment Command에서 컨테이너에 전달할 명령을 입력합니다. 여기서는 [“myjob.sh”, “30”] 를 입력해주세요. vCPUs, Memory, Job attempts와 Execution timeout은 job definition에 설정된 값을 가져옵니다. 이 Job에 대한 설정도 가능합니다.Parameters를 통해 job을 제출할 때 기본 작업 정의 파라미터를 재정의 할 수 있습니다. Parameters에 대한 자세한 내용은 작업 정의 파라미터 페이지를 참고해주세요.Environment variables는 job의 컨테이너에 환경 변수를 지정할 수 있습니다. 여기서 주의할 점은 Key를 AWS_BATCH로 시작하면 안 된다는 것입니다. AWS Batch에 예약된 변수입니다.Key=BATCH_FILE_TYPE, Value=script Key=BATCH_FILE_S3_URL, Value=s3:///myjob.shSubmit job을 선택합니다.Job이 Submitted 된 화면입니다.Dashboard를 보시면 Runnable 상태로 대기 중인 것을 확인할 수 있습니다.STEP11. 결과 확인CloudWatch > Log Groups > /aws/batch/job에서 실행 로그를 확인할 수 있습니다.Conclusion간단한 튜토리얼로 AWS Batch를 설정하고 실행하는 방법을 알아봤습니다.(참 쉽죠?) 다음 글에서는 AWS Batch의 Array 또는 Job depends on등의 확장된 기능들을 살펴보겠습니다. 참고1) AWS Batch – 쉽고 효율적인 배치 컴퓨팅 기능 – AWS2) AWS Batch 시작하기 - AWS Batch3) Amazon ECR의 도커 기본 사항 - Amazon ECR글윤석호 이사 | 브랜디 [email protected]브랜디, 오직 예쁜 옷만#브랜디 #개발문화 #개발팀 #업무환경 #인사이트 #경험공유

기업문화 엿볼 때, 더팀스

로그인

/