스토리 홈

인터뷰

피드

뉴스

조회수 2837

Radix? Redis!

얼마전부터 antirez twitter에서 radix tree 관련 트윗이 올라왔습니다. 얼마 지나지 않아 antirez가 radix tree를 구현한 rax 프로젝트를 공개하고 redis의 cluster hash_slot의 저장구조를 radix tree로 수정 되는것을 보았습니다.그동안 antirez의 코드 읽으면서 배우는 게 많았고, 자료구조에 관심이 많아서 살펴보기 시작했습니다. radix tree를 왜 구현 했는지, 어떻게 구현쟀는지 알아보고 radix tree를 redis에 어떻게 적용하였는지도 알아보겠습니다.antirez는 redis의 hash-slot -> key 구조에서 중복으로 인한 메모리 사용을 줄이기 위해 radix tree 를 만들었다고 합니다. 이 포스트에선 rax를 적용시킨 redis cluster로 이야기를 진행 하겠습니다.“현재는 hash-slot -> key에만 사용되지만 추후에는 다양한 곳에 사용 예정”이라는 트윗redis cluster?redis에는 cluster 기능이 있습니다.6대 이상의 redis 노드를 cluster 구성하면(최소 leader 3대, follower 3대 구성해야 cluster 가능) 16384개의 hash_slot이 노드 갯수에 맞게 분배가 됩니다. 즉 3대의 leader로 cluster 구성하면 각각의 leader는 0 ~ 5460, 5461 ~ 10922, 10923 ~ 16383 hash_slot을 나눠 가집니다.cluster 구성 후 client가 데이터 저장/삭제/조회 명령어를 redis server에 전송할 때 마다 key의 hash값을 구하고 어떤 leader hash_slot에 포함되는지 찾습니다.# example 127.0.0.1:7000> set hello world # hash_slot = crc16("hello") & 0x3FFF 계산된 값이 현재 접속한 leader의 hash_slot 범위에 있다면 그대로 실행 되지만 다른 leader의 hash_slot 이라면 에러를 발생하고 다른 leader로 이동하라고 힌트를 줍니다.cluster 구성 후에 노드를 추가 하거나 제거 할 경우 각 leader의 hash_slot을 재분배 하고, hash_slot에 맞게 key도 재분배 되어야 합니다. 단순하게 생각하면 leader의 hash_slot 재분배한 후 모든 key를 재계산하고 hash_slot에 맞는 leader에 할당 하는 겁니다.[현재까지 저장된 keys].forEach(v => { hash_slot = crc16(v) & 0x3FFF // leader에 할당된 hash_slot에 맞게 분배 }) 하지만 antirez는 redis Sorted set 데이터 타입의 구현체인 skiplist 을 이용하여 문제를 풀었습니다. skiplist는 member와 score를 저장하고, score를 기준으로 정렬합니다. skiplist의 member에는 key를 저장하고 score에는 key의 hash_slot을 저장합니다.(변수명 slots_to_keys)slots_to_keys 정보는 cluster 구성된 모든 노드가 저장합니다. 이후 재분배가 필요해지면 16384개 hash_slot을 leader 갯수에 맞게 재분배 하고 slots_to_keys에 저장된 “key:hash_slot” 정보를 가지고 해당 hash_slot의 key를 조회 및 재분배 합니다. 즉 slots_to_keys에 이용하여 재분배시 발생하는 계산을 없앤것입니다.잘 했구만 뭐가 문제냐?redis에 key가 추가/삭제 될때마다 slots_to_keys에 데이터가 저장되고 지워집니다. redis에 저장되는 key 갯수가 증가 할수록 slots_to_keys의 크기도 커짐을 의미 합니다.(※ 메모리 사용량)또한 leader 갯수에 맞게 16384개 hash_slot을 leader에 재분배하고, 각 hash_slot에 맞는 key를 찾고 할당 합니다. 예를들어 slots_to_keys에서 score 0인(hash_slot 0을 의미) member를 조회해서 0번 hash_slot에 할당, score 1인 member를 조회해서 1번 hash_slot에 할당 하는 방식으로 0 ~ 16383 hash_slot을 진행합니다.앞에서 말한 hash_slot에 속한 key를 조회 하는 GETKEYSINSLOT 명령어가 있는데 여기에 이슈가 있습니다.cluster GETKEYSINSLOT slot count # slot: hash_slot 번호 # count: 특정 hash_slot에서 조회할 key 갯수 # example 127.0.0.1:7000> cluster GETKEYSINSLOT 0 3 # 0번 hash_slot의 key를 3개 조회한다. "47344|273766|70329104160040|key_39015" "47344|273766|70329104160040|key_89793" "47344|273766|70329104160040|key_92937" 사용자가 특정 hash_slot에 몇개의 key가 저장 되었는지 모르기때문에 count에 Integer.MAX 를 대입하는데, redis는 hash_slot에 실제로 저장된 key 갯수와는 상관없이 client가 전달한 count만큼의 메모리를 할당합니다.} else if (!strcasecmp(c->argv[1]->ptr,"getkeysinslot") && c->argc == 4) { /* cluster GETKEYSINSLOT */ long long maxkeys, slot; unsigned int numkeys, j; robj **keys; // ... 명령어의 4번째 인자를 maxkeys에 할당, 즉 사용자가 입력한 count if (getLongLongFromObjectOrReply(c,c->argv[3],&maxkeys,NULL) != C_OK) return; // ... keys = zmalloc(sizeof(robj*)*maxkeys); numkeys = getKeysInSlot(slot, keys, maxkeys); addReplyMultiBulkLen(c,numkeys); for (j = 0; j < numkeys>zmalloc maxkeyscluster GETKEYSINSLOT unnecessarily allocates memory그래서 메모리도 적게 차지하면서(압축 가능) key와 key의 hashslot을 효율적으로 저장 및 조회가 가능한 자료구조가 필요했고 antirez는 radix tree를 선택합니다.※ 뜬금 없는데 2012년, redis 자료형에 Trie를 추가한 P/R이 생각났습니다.radix tree 구현한 rax 알아보기시작하기전 radix tree (Wikipedia) 위키 페이지의 그림을 보고 감을 잡은 후에 아래를 보시면 잘 읽힙니다.자! 이제부터 rax의 주석과 코드를 보면서 어떻게 구현됐는지 알아보겠습니다.Noderax의 노드 구성은 다음과 같습니다.typedef struct raxNode { uint32_t iskey:1; /* Does this node contain a key? */ uint32_t isnull:1; /* Associated value is NULL (don't store it). */ uint32_t iscompr:1; /* Node is compressed. */ uint32_t size:29; /* Number of children, or compressed string len. */ unsigned char data[]; } raxNode; 노드의 정보를 담고있는 32 bit(iskey, isnull, iscompr, size)와 key/value 그리고 자식 노드의 포인터를 저장하는 unsigned char data[]가 있습니다. 특이한 점은 key/value를 동일한 노드에 저장 하지 않고 key가 저장된 노드의 자식 노드에 value를 저장합니다.※ 사진 출처위 그림을 예로 32 bit 정보가 어떤걸 의미하는지 알아보겠습니다.iskey는 노드가 key의 종착역(iskey:1)인지 중간역(iskey:0)인지 나타내는 flag입니다. 1, 3 노드는 iskey:0 이고 2, 4, 5, 6, 7 노드는 iskey:1이 됩니다.isnull은 value의 null 여부를 표시합니다. unsigned char data[]에 key/value 그리고 자식 노드의 포인터를 저장하므로 value를 찾으려면 계산이 들어갑니다. 불필요한 연산을 줄이기 위해 만든 필드 같습니다.Trie는 각 노드에 한글자씩 표현 하지만 Radix는 압축을 통해 한 노드에 여러 글자 표현이 가능합니다. 이를 나태내는 플래그 iscompr 입니다. 노드가 압축된 노드(iscompr:1)인지 아닌지(iscompr:0)를 나타냅니다.size는 iscompr 값에 따라 의미가 다릅니다. iscompr이 1이면 저장된 key의 길이를 의미하고 iscompr이 0이면 자식노드의 갯수(저장된 key의 갯수)를 의미합니다.위 4개 정보를 이용해서 한 노드의 크기를 구하는 코드는 아래와 같습니다.#define raxNodeCurrentLength(n) ( \ sizeof(raxNode)+(n)->size+ \ ((n)->iscompr ? sizeof(raxNode*) : sizeof(raxNode*)*(n)->size)+ \ (((n)->iskey && !(n)->isnull)*sizeof(void*)) \ ) ※ 노드에 value 주소를 저장하거나, 마지막 자식 노드 포인터를 알고 싶을때 사용합니다.FindraxLowWalk 함수를 이용해 key가 존재 하는지 판단합니다.size_t raxLowWalk(rax *rax, unsigned char *s, size_t len, raxNode **stopnode, raxNode ***plink, int *splitpos, raxStack *ts) rax에 “ANNIBALE” -> “SCO” -> [] 로 저장 되어있을때 어떤 값을 리턴하는지 알아보겠습니다.*s 가 “ANNIBALESCO”이고 len이 11 인 경우# splitpos: 0, return value: 11 "ANNIBALE" -> "SCO" -> [] ^ | *stopnode *s가 “ANNIBALETCO”이고 len이 11인 경우# splitpos: 0, return value: 9 "ANNIBALE" -> "SCO" -> [] ^ | *stopnode *s의 길이 len과 return value가 같다면 rax에 key가 존재하는 것입니다. *s의 길이 len과 return value가 다른 경우 어디까지 매칭됐는지 보여주는 return value와 어떤 노드에 어디까지 일치했는지 표현하는 *stopnode, splitpos를 통해 추가 정보를 얻을수 있습니다.InsertraxLowWalk 함수를 이용해서 저장할 위치를 찾습니다. (*stopnode, splitpos, return value)1번에서 구해진 데이터를 이용해서 새로운 노드 생성 및 링크를 연결합니다.rax에 “ANNIBALE” -> “SCO” -> [] 상태에서 “ANNIENTARE”를 저장하는 과정입니다.1. raxLowWalk 함수를 이용하여 저장할 위치 탐색 splitpos: 4, return value: 4 "ANNIBALE" -> "SCO" -> [] ^ | *stopnode 2. *stopnode, splitpos 데이터를 이용하여 노드 분리 "ANNI" -> "B" -> "ALE" -> [] 3. iscompr: 0인 노드 "B"를 기준으로 새로운 key 저장 ("B"와 "E"는 같은 노드) |B| -> "ALE" -> [] "ANNI" -> |-| |E| -> "NTARE" -> [] RemoveraxLowWalk 함수를 이용해서 저장할 위치를 찾습니다. (*stopnode, splitpos, return value)1번에서 구해진 데이터를 이용해서 노드 제거 및 compress가 가능다면2가지 경우가 있습니다.마지막 노드만 iskey: 1이고, 연속으로 iscompr:1인 노드가 된 경우마지막 노드만 iskey: 1이고, iscompr:1 -> iscomplr:0 -> iscomplr:1 노드 구조가 된 경우입니다.첫번째 경우를 알아 보겠습니다. rax에 “FOO” -> “BAR” -> [] 상태에서 “FOO”를 지우는 과정입니다.1. raxLowWalk 함수를 이용하여 저장할 위치 탐색 splitpos: 3, return value: 3 "FOO" -> "BAR" -> [] ^ | *stopnode 2. 해당 key 삭제, 여기서는 자식노드가 있으므로 노드 삭제는 하지 않고 노드의 iskey: 0으로 세팅 "FOO" -> "BAR" -> [] 3. compress가 가능한 경우 진행 "FOOBAR" -> [] 두번째 경우를 알아 보겠습니다.0. "FOOBAR"와 "FOOTER"가 저장된 상황입니다. FOOTER를 지우는 경우입니다. |B| -> "AR" -> [] "FOO" -> |-| |T| -> "ER" -> [] 1. raxLowWalk 함수를 이용하여 저장할 위치 탐색 splitpos: 0, return value: 6 |B| -> "AR" -> [] "FOO" -> |-| |T| -> "ER" -> [] ^ | *stopnode 2. 해당 key 삭제 "FOO" -> "B" -> "AR" -> [] 3. compress가 가능한 경우 진행 "FOOBAR" -> [] cluster 정보는 어떻게 저장되나?기존 skiplist 자료구조를 이용했던게 어떻게 변경 되었는지 알아보겠습니다.server.cluster->slots_keys_count[hashslot] += add ? 1 : -1; if (keylen+2 > 64) indexed = zmalloc(keylen+2); indexed[0] = (hashslot >> 8) & 0xff; indexed[1] = hashslot & 0xff; memcpy(indexed+2,key->ptr,keylen); if (add) { raxInsert(server.cluster->slots_to_keys,indexed,keylen+2,NULL,NULL); } else { raxRemove(server.cluster->slots_to_keys,indexed,keylen+2,NULL); } 먼저 slots_keys_count 변수를 이용하여 각 hash_slot의 key 갯수를 저장합니다.그리고 key는 hash_slot(2 byte) + key, value는 NULL로 rax에 저장하여 특정 hash_slot에 속한 key 조회를 쉽게 만들었습니다.마치며rax 구현과 rax가 어떻게 redis에 적용됐는지 보면서 오랜만에 재밌게 코드를 읽은것 같습니다. 개인적으로 데이터 관련 유용한 무언가를 만드는게 목표인데, 이런 좋은 코드들을 하나 둘씩 제것으로 만드는것도 과정이라 생각하며 진행했습니다.앞으로 rax가 redis에서 어떻게 쓰일지 흥미롭고, Redis를 Saas 형태로 제공하는 업체들이 언제 적용할지도 궁금합니다.긴 글 읽어주셔서 감사합니다.cluster, rax 관련 antirez twitterRedis cluster Insertion cluster Issuesame amount data hash table vs radix treehashset + ziplist -> radix tree + listpack 1/5replace Hashset with Radix treeraxNode에서 사용한 flexible memberflexible memberrax 를 이용한 Redis Streams(2017.12.17일 업데이트)Redis Stream#잔디 #토스랩 #JANDI #기술스택 #도입후기 #Redis #인사이트
조회수 1872

Android Studio JCenter 이용하기

 안녕하세요. 크몽개발팀 입니다.오늘 포스트 주제는 Android Studio JCenter 이용하기입니다.JCenter????  JCenter에 대해 처음 들으시는분들도 있을거같은데요.JCenter는 라이브러리들이 모여있는 저장소라고 보시면 되겠습니다.그렇다면 JCenter를 이용하여 무엇을 할까요?바로 외부 라이브러리들을 가져와서 프로젝트안에 Import 할려고 합니다. JCenter 사이트 링크 : https://bintray.com/bintray/jcenterJCenter 페이지에 접속하시면 위와 같은 페이지를 볼 수 있는데요.여기서 사용하고 싶은 라이브러리를 검색해보겠습니다.제가 검색한 라이브러리는 ImageLoder 라이브러인 'Glide'를 검색했습니다.빨간색으로 표시되있는게 제가 찾던 라이브러리 입니다.검색한 라이브러리를 클릭하면 위와 같이 상세페이지를 볼 수 있는데요.라이브러리 Github 주소 와 버젼에 대한 정보를 확인할 수 있습니다.그럼 이제 검색한 라이브러리를  Android Studio Gradle에 Import 하겠습니다. Android Studio에서 프로젝트를 생성하게 되면 위와 같이 3개의 그래들 파일을 볼 수 있는데요.자주 사용할 그래들 파일은 app폴더에 있는 그래들 파일입니다.그래들 파일을 열어보면 낯익은 코드들이 보이는데요.ADT에서는 매니페스트에서 버젼관리를 햇었는데 Studio에서는 그래들로 빠진거같습니다.그리고 빨간표시를 해둔곳이 바로 JCenter에서 검색한 라이브러리를 Import 하시면 되겠습니다.  위에 JCenter에서 찾은 라이브러리명을 입력하고 뒤에 버젼번호도 같이 입력합니다.그리고 Sync 버튼을 눌러주면 라이브러리가 Import 됩니다. External Libraries를 확인해보시면 라이브러리가 추가된걸 확인할 수 있습니다.---------------------------------------------------------------------------------------이렇게 JCenter를 이용하여 간단하게 라이브러리들을 Import를 할 수 있습니다.그리고 그래들 과 JCenter를 이용하여 라이브러리를 적용할때 가장 좋은점은'com.github.bumptech.glide:glide:3.+' 이런식으로 버젼에대한 값을 주면라이브러리 상위버젼이 나올경우 자동으로 최상위 버젼으로 라이브러리를 Import 해준다는 점입니다.이로써 라이브러리 버젼관리도 많이 편해질거 같습니다.이것으로 Android Studio JCenter 이용하기 포스트를 마치겠습니다.#크몽 #개발팀 #인턴 #인턴생활 #인사이트
조회수 2980

JANDI CONNECT 개발기

지난 1월 말, 새해를 맞아 잔디에 새로운 기능이 업데이트되었습니다. 바로 잔디 커넥트에 관한 내용인데요, 협업에서 많이 쓰이는 몇 가지 외부 서비스를 잔디와 쉽게 연동해서 더욱 효율적인 업무 커뮤니케이션을 할 수 있게 되었습니다. 많은 고객분들이 이번 업데이트를 기다려주신 만큼, 저희 개발팀 또한 기대에 보답하고자 지난 몇 주의 스프린트 동안 열심히 준비했습니다. 이번 글에서는 커넥트 동작 방식을 설명하고 그 개발 과정에서 저희가 겪은 시행착오를 비롯한 여러 값진 경험들을 공유하고자 합니다.Integration? Webhook!연동: [기계] 기계나 장치 따위에서, 한 부분이 움직이면 다른 부분도 함께 잇따라 움직임.앞서 말한 대로 잔디 커넥트는 여러 웹 서비스들과 잔디를 연동할 수 있는 기능입니다. 서로 다른 웹 서비스를 연동하기 위해선 한 서비스 내에서 특정 이벤트가 발생 했을 때 다른 서비스로 해당 이벤트를 알려주는 연결 고리가 필요합니다. 이때 해당 연결 고리 역할을 위해 대표적으로 사용되는 기법이 웹훅(WebHook) 입니다. 웹훅은 user-defined HTTP callbacks, reverse APIs 등으로 불리는데, 간단히 설명하자면 웹 서비스에서 공개한 API가 아닌 사용자가 직접 지정한 주소(URL)로 특정 이벤트가 발생 시 HTTP Request를 보내주는 기법입니다. 예를 들어,새로운 일정이 등록된 경우(Google Calender)요청한 Pull Request가 Merge된 경우(GitHub)카드에 새로운 코멘트가 작성된 경우(Trello)이러한 이벤트가 발생했을 때 사용자가 매번 이벤트가 발생했는지 확인하지 않아도 서비스가 먼저 알려줄 수 있도록 일종의 알림을 등록하는 것이죠. 잔디 커넥트는 이와 같은 특징을 이용해서 각각의 웹 서비스에서 제공하는 웹훅을 잔디의 메시지 형태로 전달하는 기능입니다.일반적으로 웹훅은 이벤트에 대한 알림을 외부로 전달하는 것을 말합니다. 이 부분에서 중요한 것은 전달 방향인데, 서비스 내부에서 외부로 전달하기 때문에 이를 Outgoing Webhook으로 부르기도 합니다1. 같은 맥락에서 반대로 생각해보면 외부에서 서비스 내부로 특정 데이터를 전달하는 경우이니 Incoming Webhook이 됩니다. 앞서 웹훅을 reverse API라고 했는데 이를 다시 뒤집으니 결국 서비스 내부로 통신하는 제한적인 API와 같은 역할을 합니다. 굳이 용어를 구분한 이유는 API와 달리 접근하려는 서비스의 별도 인증 절차를 거치지 않고도 사용자가 생성한 웹훅의 URL을 인증 토큰으로 사용하며 약속된 Request Body 포맷만 알고 있다면 자유롭게 사용할 수 있기 때문입니다.개념 설명이 다소 길어졌지만, 이번 잔디 커넥트 기능에 대해 용어나 개념이 낯설다는 피드백이 생각보다 많았기 때문에 이번 글을 통해 더 많은 분들이 웹훅을 이해하는 데 도움이 될 수 있으면 좋겠습니다.구현에 앞서서비스를 운영한지 1년 정도 지난 시점에서 저희 내부적으로는 백엔드의 기술 스택 변경 및 각 서비스 분리에 대한 갈증이 있었습니다. 하지만 이미 서비스를 운영 중이기 때문에 안정성이 최우선시 되는 만큼 꽤 부담스러운 숙제로 미뤄둘 수밖에 없었고요. 때마침 커넥트 기능은 숙제를 시험해볼 만한 좋은 기회임에는 분명했지만, 새로운 기술 스택을 바로 서비스에 적용하기엔 오히려 개발 효율이 떨어질 것이라는 판단하에 일단 서비스 분리에만 집중하기로 했습니다.기본적으로 API와 DB를 기존 서버와 분리하고 웹훅 데이터를 저장하기 위한 큐와 해당 데이터를 처리하는 배치 서버 또한 모두 기존 서비스와 분리해서 최대한 결합도를 제거했습니다. 이런 설계 덕분에 추후 사업 전략이나 각 국가의 특성에 맞춰 커넥트 기능을 어렵지 않게 포함하거나 제외할 수 있게 되었습니다. 전반적인 저희 잔디 백엔드 아키텍쳐에 대해서는 아직 한 번도 소개 해드린 적이 없으니 다음에 따로 주제로 선정해 집중적으로 다뤄보도록 하겠습니다.동작 방식잔디 커넥트가 동작하는 방식은 기본적으로 다음과 같습니다.Incoming Webhook URL 생성 - 외부 서비스 웹훅 등록 - 웹훅 수신 - 메시지 작성 연동 대상 서비스마다 조금씩 차이가 있지만, 기본적으로 모두 위와 같은 방식으로 동작하기 때문에 단계마다 나누어 설명하겠습니다.1. Webhook URL 생성Webhook URL은 https://wh.jandi.com/connect-api/webhook/{teamId}/{webhook-token}와 같은 형태로 생성됩니다. hostname을 별도로 설정함으로써 기존 API 서버와의 분리는 물론이고, nginx의 Limiting the Request Rate 설정을 이용해서 호출되는 웹훅 요청 수를 효과적으로 제한할 수 있었습니다. webhook-token은 중복을 피하면서 각 웹훅에 대한 유효성을 검증할 수 있도록 여러 키를 조합한 md5 hash 값을 이용했습니다.이렇게 생성된 URL은 Incoming Webhook 뿐만 아니라 Google Calendar 등의 서비스에 등록하는 콜백 URL로 사용합니다.2. 외부 서비스 웹훅 등록웹훅을 등록하는 방법은 서비스에 따라 API를 이용하거나 수동으로 직접 등록할 수 있습니다. 사용자가 직접 웹훅을 등록하는 방법은 웹훅 URL만 생성해서 전달하면 등록 과정의 추가 처리가 필요 없어서 간단하지만, 서비스마다 등록하는 방법이 조금씩 다르고 다소 복잡하게 느껴지는 문제가 있습니다. 반대로 각 서비스에서 제공하는 API를 이용해 웹훅을 등록하면 사용자의 부담을 많이 줄일 수 있지만, 그만큼 내부적으로 처리해야 할 작업이 많아집니다. 그래서 구현 초기에 꽤 많은 시간을 투자할 수밖에 없었고 그 과정에서 아래와 같은 어려움을 겪었습니다.웹훅 관련 API를 사용하려면 먼저 인증을 받아야 하는데 서비스마다 제공하는 인증 방식이 조금씩 달라서 이를 통합하는 모델을 만들기가 쉽지 않았습니다. 요약하자면 기본적으로 accessToken을 사용하지만, 인증 방식에 따라 부가적으로 필요한 데이터가 서로 조금씩 다른것이죠. 가령, 구글캘린더는 만료 일시와 토큰 갱신을 위한 refreshToken 값을 별도로 갖고 있어야 합니다. 또 한가지 놓치기 쉬운 부분은 인증 폐기(revoked) 관련한 데이터 처리인데 저희가 경험한 바로는 인증이 폐기되었을 때 별도로 웹훅 알림을 주지 않기 때문에 반드시 인증의 유효성을 확인하는 추가 로직이 필요합니다.대부분의 사무실이 그렇듯이 저희 또한 공유기를 이용해 내부 네트워크를 구성하고 있습니다. 게다가 백엔드 파트는 개개인의 로컬 가상 서버에 동일한 환경을 설정해놓고 개발을 하므로2보통 경우엔 외부(public network)에서 들어오는 요청을 받을 수 없습니다. 그렇다고 매번 외부 네트워크에 있는 서버에 배포 후 테스트하기가 어려우니, 저희는 각 로컬 서버마다 고유 포트 번호를 나눠 갖고 WAN이 물린 공유기의 포트 포워딩을 알맞게 설정한 뒤에 네트워크 터널링 유틸리티인 ngrok을 이용해 내부와 연결되는 public 주소를 생성해서 외부 서비스와 문제없이 통신할 수 있었습니다.3. 웹훅 수신웹훅을 통해 들어오는 Request는 일단 정상 응답을 하는 게 좋습니다. 서비스마다 최초 웹훅 등록 시 유효한 URL인지 확인하는 테스트 요청을 하는데 이때 정상 응답을 하지 못하면 아예 등록조차 처리되지 않습니다. 또한, 정상적으로 등록된 이후 특정 이벤트에 해당하는 웹훅 요청에 대한 응답에도 주의할 필요가 있는데, 만약 에러 응답이 반복되면 일정 시간 동안 각 서비스에서 아예 해당 웹훅을 발송하지 않도록 제한이 걸려 더 이상 테스트를 진행할 수 없는 경우도 있었습니다.따라서 일단 웹훅 요청이 들어오면 teamId와 webhook-token 값으로 올바른 웹훅인지 검증한 후 서비스별 큐에 Request header와 body를 포함한 데이터를 전달한 뒤 바로 응답하고, 큐에 쌓인 데이터는 커넥트 종류별로 배치 서버가 돌면서 처리하게 됩니다. SQS를 사용함으로써 늘어나는 데이터에 대한 안정성을 확보하고 각각의 배치 서버를 독립적으로 분리해서 구현함으로써 자연스레 확장성(scalability)도 보장할 수 있게 되었습니다.4. 메시지 작성웹훅 데이터를 잔디의 메시지로 변환하는 역할은 배치 서버가 담당합니다. 서비스별로 데이터 포맷이 다르므로 해당 데이터를 파싱 및 처리하는 Worker 또한 각각 구현했습니다. 사실 커넥트 기능에서 가장 핵심적인 역할을 하는 부분인 만큼 가장 많은 공수가 드는 작업이였던 것 같습니다.서비스마다 정해놓은 웹훅 이벤트와 잔디 커넥트에서 제공하고자 하는 알림이 서로 완전히 일치하지 않아서 이를 서로 연결하는 작업연동 서비스의 문서가 잘 정리되어 있지 않아서 일일이 필요한 동작을 취하고 그에 따라 들어오는 데이터를 정리하는 작업잔디 계정 언어에 따라 메시지 L10N3을 적용하는 작업커넥트 메시지를 전달하기 위해 기존 멤버와 다른 커넥트 봇을 구현하는 작업등 요약하기 어려울 정도로 크고 작은 이슈들이 많았습니다. 그 내용이 너무 다양해서 모두 상세히 기록하긴 어렵지만, 개중에 도움이 될만한 내용을 추려서 아래 따로 정리했으니 관심 있으신 분들은 참고하시면 좋을 것 같습니다.서비스별 집중 탐구커넥트 구현 일정을 최대한 앞당기기 위해 저희는 개발자들끼리 각각의 커넥트 종류 별로 전담해서 작업하는 전략을 취했습니다. 제가 대표로 글을 작성하기는 하지만 보다 정확하고 구체적인 정보를 전달하는 것이 좋겠다는 생각에 개발을 담당하신 분들과의 짧은 인터뷰 형식을 빌려 공유하겠습니다.- Google CalendarQ. 기술적으로 난이도가 높았던 작업을 소개해달라.전반적으로 어려운 작업이 있었다기보단, 캘린더 특성상 세세하게 처리할 부분들이 많아 설계와 구현이 어쩔 수 없이 복잡해졌다. 가장 골치 아팠던 작업은 일정 알림을 타임존(Time Zone)에 따라 각각 알맞은 시간에 전달하는 작업인데, “잔디 계정의 타임존”, “구글 캘린더의 타임존”, “개별 일정의 타임존” 이렇게 3가지를 모두 고려해서 경우마다 기준이 되는 타임존을 결정하는게 엄청 까다로웠다. 심지어 구현 후 테스트를 하는 과정에서도 출력된 시간이 올바로 표시된 것인지조차 헷갈려서 디버깅하는데 한참 고생할 수 밖에 없었다.웹훅을 등록하고 관리하는 부분도 꽤 복잡했는데, 구글 답게(?) 웹훅에도 만료 기간이 존재한다는 것이 포인트다. 때문에 만료되기 전에 반드시 재등록 및 과거 웹훅 삭제 작업을 하는데, 효과적으로 처리하기 위해 “웹훅을 받을 때마다 만료 기간을 확인”, “등록된 일정이 많지 않아 웹훅을 받지 못하는 경우도 있으니 별도의 배치서버가 하루 단위로 확인” 이렇게 두 가지 로직을 넣어서 자동으로 웹훅을 유지하도록 구현했다.또한, 다른 연동 서비스와 달리 구글은 웹훅 콜백으로 들어오는 요청에 해당 이벤트에 대한 데이터를 직접 담아주지 않기 때문에 key를 가지고 한 번 더 API 호출을 통해 필요한 데이터를 가져와야 한다는 점도 주의해야 한다. 요청해야 할 API 문서는 비교적 잘 정리된 편이지만, 같은 요청에 대해서도 인자를 어떻게 보내는지에 따라 그 응답이 제각각이기 때문에 응답 값에 대해 무조건 신뢰하고 처리해서는 안 된다. 당연히 존재할 것으로 생각한 필드 값에 빈 배열이 들어와서 일정 관련된 데이터를 일부 날리고 나서야 깨달았다.. -_-Q. 가장 처리해야 할 이슈가 많았다고 알고 있는데, 그중에서도 기억에 남는 이슈가 있을 것 같다.너무 많은 이슈를 동시에 처리하다 보니 특별히 기억에 남는 이슈는 없다. 다만 아직도 왜 그랬는지 확실한 이유는 알 수 없지만, 언젠가 한 번 구글에서 웹훅을 아예 전달해주지 않았던 경우가 있었다. 과도한 요청으로 limit이 걸린 것도 아니었는데, 갑자기 웹훅이 안들어오니깐 우리로서는 어떻게 풀어볼 방법이 없었다. 그러다 나중에 확인해보니 대략 12시간쯤 지나고 나서 그동안 밀려있던 웹훅 데이터가 한 번에 밀려서 들어와 있더라. 다행히 그 이후로 지금까지 한 번도 재현되지 않는걸 보니, 혹 동일한 증상을 겪는다면 당황하지 말고 기다려 보시라.반복 일정을 다루는 것도 꽤 골치 아픈 이슈인데, 왜냐하면 일정이 있을 때 마다 웹훅 알림을 주지 않고 처음 등록된 시점에서 한 번만 정보를 알려주기 때문에 등록된 시점 이후의 일정은 내부적으로 계속 등록해줘야 한다. 기본적으로 구글 캘린더는 RFC-55454 표준을 따르지만, 실제 전달되는 데이터 중 일부는 표준과 조금 다른 부분이 있었다. 특히 반복 일정(recurrence) 관련 데이터 포맷이 조금 다르므로 캘린더 데이터를 파싱하기 위해 만약 외부 library를 사용한다면 별도의 예외처리가 필요하다. 더욱 더 까다로운 건 사실 등록된 반복 일정이 수정되거나 삭제되는 경우인데, 이때 “특정 일정만 삭제”, “지금 시점 이후의 일정 모두 수정” 등 워낙 케이스도 많고 각각을 테스트 하는 것도 쉽지 않기 때문에 작업 시간이 꽤 오래 걸렸다. (심지어 아직 확인하지 못한 드문 케이스에서는 잠재된 버그가 있을 수도…)Q. 그 밖의 도움이 될만한 노하우나 꿀팁이 있다면?구글 캘린더 API는 Webhook 보단 Push Notification 키워드를 많이 사용한다. 푸시 노티라는 게 좀 다른 카테고리에서 많이 쓰이는 용어이기도 하다 보니 코드 리뷰 등의 커뮤니케이션을 할 때 혼동이 좀 있었던 것 같다.물론 서비스 요구사항마다 다르겠지만, 잔디 같은 경우엔 요구사항에 맞춰 계속 설계를 변경 및 개선하다 보니 결과적으로 너무 복잡해져 효율이 떨어지는 코드를 작성할 수밖에 없었다. 처음부터 연동을 생각하기보다는 아예 캘린더 자체 기능을 베이스로 설계하고 데이터만 구글에서 가져온다 생각했다면 개발 생산성이 더욱 좋았을 것 같다.- TrelloQ. 기능을 구현하면서 느낀 아쉬웠던 점과 좋았던 점을 짚어달라.트렐로 공식 API 문서가 더 명확했다면 좀 더 개발이 수월했을 것이다. 문서가 RESTful하게 end-point path는 간결하게 잘 정돈되어 있지만, 각 요청 parameter에 대한 설명이나 response 데이터 등이 명확하게 정리되지 않아서 적합한 API를 찾거나 불명확함을 걷어내기 위한 테스트를 하다 보니 전반적으로 시간이 길어지고 비효율적이었던것 같다.그에 반해 트렐로에서 웹훅 이벤트를 발생시키기 위한 유저 액션들이 비교적 간단하고, 그에 따른 콜백 리퀘스트 또한 누락 없이 빠르게 잘 들어와서 그나마 쉽게 테스트를 할 수 있었다.Q. 기능 구현을 위해선 반드시 알아야 할 웹훅 이벤트 종류 및 데이터에 대한 문서는 정리가 전혀 안 되어있다고 하던데 정말인가?그렇다. 처음엔 좀 당황했지만, 그래도 방법이 없으니 일일이 경우마다 테스트해보면서 직접 정리를 하려고 했다. 하지만 각 웹훅마다 큰 구분만 있고 세세한 데이터는 너무 다양해서 깔끔하게 정리하기가 어려워 따로 공유를 위한 문서를 만들지는 못했다. 예를 들자면 트렐로에서 updateCard 라는 action type의 웹훅 데이터를 보내주는데, 그 데이터만 보고 “Card Archive”, “Description 수정/삭제”, “Due date 등록/수정”, “카드 이동” 등의 여러 가지 서로 다른 이벤트를 구분해야 한다. 근데 그 구분하는 방법이 특정 flag가 있는 게 아니라서 각 data를 모아놓고 역으로 분리하다 보니 코드를 깔끔하게 작성하기가 어려움은 물론, 추후 트렐로 측 데이터의 변동이 있을 때의 품질을 보장할 수 없는 리스크를 안고 구현할 수밖에 없었다.Q. 그 밖의 도움이 될만한 노하우나 꿀팁이 있다면?만약 트렐로와 어떤 형태로든 연동하려고 한다면, 설계 전에 모든 API에 대해 꼼꼼히 살펴보고 웹훅 이벤트 또한 직접 테스트해서 일단 전체적으로 리스트업을 정리하는 게 보다 생산성에 도움이 될 것이다. 트렐로를 잘 알고 있더라도 서비스 내부에서 “보드”, “리스트”, “카드”가 어떤 상관관계를 가지는지 미리 정리해보는 것도 좋다.사소하지만 좀 특이했던 점은 웹훅을 처음 등록할 때 해당 URL로 확인 요청을 한번 하는데, 이때 요청은 HTTP method가 POST가 아닌 HEAD로 들어온다. 그래서 반드시 동일한 URL의 HEAD 요청에 대해서도 정상 응답을 할 수 있도록 구현해야 한다.마무리잔디 커넥트를 구현하면서 특히 서비스 품질과 개발 속도 간의 밸런스에 대한 고민을 많이 했습니다. 초반에 서비스 종류별로 작업을 분리하고 각각의 방식으로 설계한 뒤 나중에 정리하는 전략이다 보니 공통으로 가져갈 수 있는 DB 모델이나 서비스 로직이 많아서 이를 통합하기 위해 반복 작업을 할 수밖에 없었는데 이 부분이 저희 내부적으로 느낀 가장 아쉬운 부분이 아니었나 생각합니다. 기능 중 많은 부분이 외부 서비스에 의존적이다 보니 생각하지도 못한 크고 작은 이슈들이 발생해서 일정 산출에도 꽤 어려움을 겪었습니다.커넥트 기능을 출시한 이후로 꽤 시간이 지났음에도 불구하고 이슈 백로그(Backlog)를 보니 아직도 개선할 부분이 많이 남아있는 듯 합니다. 그렇지만 이번에 기반이 되는 작업을 최대한 튼튼히 하기 위한 많은 시행착오를 거쳤기에, 추후 연동되는 커넥트 종류를 늘려나가는 시점5에 보다 효과적으로 개발할 수 있을 것이라 기대하면서 이번 글을 마치겠습니다.Slack API 문서 참고 ↩vagrant의 box로 서로의 로컬 개발 환경을 동일하게 유지하고 있습니다. 참고로, 현재 저희 서버 환경은 Local - Dev - Staging - Production으로 구성되어 단계별로 상황에 알맞게 배포하고 있습니다. ↩Localization의 약어. 잔디는 아시아 시장에 최적화된 서비스를 제공하고자 한국어, 일본어, 중국어 간체자(중국), 번체자(대만/홍콩), 영어 총 5가지 언어를 지원합니다. ↩아이캘린더(iCalendar)로 불리는 인터넷 캘린더의 데이터 포맷에 관한 표준. IETF 문서참고 ↩구체적인 시점은 말씀드리기 어렵지만, 더욱 좋은 사용성을 제공하고자 유저분들의 설문조사를 진행하고 있으니 많은 참여 부탁드립니다. ↩#토스랩 #잔디 #JANDI #개발후기 #일지 #인사이트
조회수 2070

외부 서비스 이용을 장려해서 개발력을 아끼자.

2017년 목표 중 하나인 Product Management에 관한 weekly 포스팅의 네번째 포스팅입니다. 원래는 weekly 포스팅이었는데..어느덧 biweekly 포스팅이 되고 있습니다. 이번에는 제가 Product Manager로서 “팀 내부 직접 개발 vs 외부 서비스 이용”에 대해서 어떻게 생각하는지에 대해서 정리할까 합니다. 이번에도 confidential한 내용은 생략했습니다.이거 한 달이면 만들어요.제품 개발을 하다보면 Core feature는 아니지만 더 나은 사용자 경험을 위해 필요한 기능을 추가해야 하는 경우가 있습니다. 그리고 이 feature가 개발하기에 쉽지 않다고 예상되는 경우가 있습니다. 이런 상황이 오면 PM, 제품 담당자(혹은 기획자, 대표)은 내부에서 개발할지 아니면 외주를 줄 지, 아니면 외부 서비스를 이용할 지 등을 고민합니다. 그리고 판단을 돕기 위해 기획자/개발자가 모여서 이런 대화를 나눕니다.이거 다 만드는데 얼마나 걸릴 것 같아요?이거 한 달이면 만들어요.그렇습니다. 저 대화가 바로 나중에 개발자가 “내가 이걸 왜 하고 있죠?”라고 얘기하는 그 순간의 시초입니다.하지만 기간은 두 배가 걸린다.하지만 직접 개발에 들어가면 기간(UX, UI디자인 포함해서)은 점점 늘어집니다. 십중팔구 안 됩니다. 되는게 더 이상한 법이에요.헛된 꿈을 꾸었다기간이 두 배가 되는 이유는 딱 하나입니다.  우리에겐 그 분야의 전문성이 없기 때문입니다. 물론 그런 일을 한 경험이 있는 사람들은 좀 더 낫습니다. 하지만 이 사람이 파편적인 경험(혹은 기억)만 가진 경우에는 똑같습니다. 별 차이가 안 나요.-_-;일단 제품의 개발 범위 결정이 안 됩니다. 이게 가장 크리티컬한 이유입니다. 처음에는 앞단에 보이는 것만 생각하고 시작하면서 역기획으로 풀어냅니다. 하지만 기획 단계에서 고려해야 할 요소들은 점점 추가되고 이 중에서 뭘 버리고, 뭘 해야 하는지 정확한 판단이 안 됩니다. 그럴 수 있는 데이터도 적고요.  거기에 디테일하게 개발하는 과정에서 고려해야 할 요소들이 빠지는 경우도 비일비재 합니다. 추가로 각종 정책 결정 이슈도 존재합니다. 이런저런 일들이 계속 추가되고, 해보지 않은 일을 하면서 업무 효율도 떨어집니다. 그러면서 기간은 계속 늘어납니다.결국 사람은 지치고, 일은 계속 늘고, 시간을 쓰게 됩니다. 그리고 그 과정에서 진짜로 에너지를 써야 할 일에 집중을 못 하게 됩니다.그냥 외부 서비스 쓰자!푸른밤의 PM으로서 저 스스로 가지고 있는 원칙이 있습니다.(사실 이건 예전에 프라이베리 때도 지키려고 했던 노력입니다.)기회를 놓치지 않는다.팀의 시간을 헛되이 쓰지 않는다.사람들의 에너지가 낭비되게 하지 않는다.좋은 역량을 가진 사람들은 제품의 core feature에만 집중한다.기회, 시간, 사람, 돈 중에서 가장 가치 없는 것은 돈이다.위 5가지 원칙을 준수하고자 하면, 대부분의 경우 그냥 외부 서비스를 이용하게 됩니다. 예를 들어서 서버 쪽에서 약간 낭비되는 코드가 있더라도 어떤 순간에는 그냥 돈을 더 써서 서버를 늘리는 것을 선택합니다. 메일 서버를 직접 구축해서 각종 마케팅용 메일을 직접 하는 것도 좋지만 그냥 메일침프를 씁니다. 요근래 저와 대표가 함께 부산에 미팅을 다녀왔는데..이것도 비슷한 맥락입니다. 제품 내에 꽤 중요하지만 서비스의 Major급 feature라고 하긴 좀 애매한 기능을 붙여야 하는 상황이었습니다. 개발팀에서는 1개월 정도면 될 것 같다고 했지만 그것보다는 전문적으로 이 일만 하는 곳의 제품을 이용하는 것이 좋다고 판단해서 부산에서 관련 사업을 하는 팀을 찾아갔습니다.“어설프게 우리가 하는 것보다, 인생을 건 사람들의 제품을 쓰는 것이 훨씬 좋다.”는 생각을 가지고 있습니다. 특히 제가 관리하는 제품들도 이런 생각을 가진 사람들이 돈을 쓰기 때문에 운영될 수 있는 제품이라서 다른 사람들보다 거부감이 낮을 수도 있습니다.외부 서비스 선택의 기준추가로 외부 서비스를 선택할 때는 이런 기준을 가지고 판단합니다.우리가 원하는 것이 어느 수준 정도로 충족되는가: 이게 제일 중요합니다. 원하는 것이 안 채워지는데도 돈을 쓸 필요는 없습니다.ㅠ어느 정도 커스텀이 가능하고, API가 제공 범위는 어떻게 되는가: 기존 시스템과 붙이기 얼마나 편하고, 우리 개발팀이 에너지를 어느 정도로 써야 하는지를 판단하기 위해 필요합니다. 덕분에 요즘은 API 문서 읽는 것이 일입니다.-_-;;(마케터, 운영팀 등이 쓰는 경우)개발자/디자이너가 꼭 붙지 않아도 사용할 수 있는가: 전 푸른밤의 모든 사람들이 코딩을 기초적인 수준으로는 했으면 합니다만 (진짜 잘하면 SQL까지도.) 그렇지 못 한 경우가 더 많고 그 과정에 역시 에너지/기회/시간 낭비가 좀 있다고도 생각합니다. 그래서 위 조건도 꽤 중요하게 봅니다.우리가 지금 쓰고 있는 다른 외부 서비스들과 연동이 어느 정도 되는가? 직접 연동이 안 되더라도 다른 방식으로 연동할 수 있는가: 가장 중요합니다. 세상 제일 중요합니다. 저희 같이 외부 서비스 연동을 하나씩 하나씩 하다보면 어느 순간부터 매월 SaaS 툴에만 $1000 넘게 쓰게 됩니다.(정말이에요.) 일단 가장 중요한 데이터 분석 툴과 연동되는지를 봅니다. 그리고 각 부분에서 core한 툴과 연결되는지 봅니다. 예를 들어서 마케팅 오토메이션 단계에서는 유입 관련 데이터 분석 툴과 연결되는 것이 핵심입니다. 제품 관련해서 외부 서비스 쓸 때도 메인 분석툴인 GA와 어떻게 붙는지가 핵심입니다.유기적인 연결이런 복잡한 기준을 잡으면서 외부 서비스 선택을 합니다.우리가 새로 만들자.하지만 이런 힘든 과정 거쳐서 외부 서비스 선택해서 잘 사용하다가 다시 직접 개발하게 될 때도 있습니다. 커스텀의 한계가 오거나, 외부 서비스 회사가 망하거나(ㅠㅠ), 서비스의 오픈 API 범위나 정책이 바뀌거나, 의외로 이 feature의 중요도가 크거나 하면 이런 의사결정을 할 수 있지 않을까 싶습니다. 하지만 아직 제가 이런 경험을 한 적은 없어서..향후에 이런 일이 발생하면 꼭 공유하겠습니다.정리하며스타트업에서 가장 부족한 것이 뭐냐는 질문을 하면 대체로 돈과 사람이라고 답할 것 같은데요. 여기에 기회, 시간이라는 것도 변수로 추가하길 권합니다. 그러면 어떤 경우에도 내 사업의 core가 되는 일들, 내 사업의 core랑 직결되는 제품 관련 과업들, 디자인/개발 관련 과업들만 생각하게 되고 여기에만 집중하게 됩니다.물론 돈이 부족한 것도 알고 있습니다만..정말 인생을 걸고 하는 사업에서 가장 아쉬운 것은 기회와 시간이라고 생각해서 외부 서비스 주구장창 이용하는 PM 안창영이었습니다.푸른밤 안창영#푸른밤 #알밤 #개발 #운영 #개발자 #PM #업무프로세스 #인사이트 #일지 #경험공유
조회수 875

[Tech Blog] How we pipe data

버즈빌에서는 미국과 일본을 비롯한 전 세계 30개국에서 1,700만 이상의 유저의 행동에 대한 데이터를 수집하고 있습니다. 이 데이터에는 유저들이 잠금화면에서 어떤 Action을 수행하는지부터 잠금화면에 어떤 광고가 노출되고 유저들이 어떤 광고를 클릭 하는 지 등의 정보들이 포함되는데요. 이러한 데이터는 여러 종류의 다른 소스로부터 오고 각기 다른 종류의 DB (MySQL, DynamoDB, Redis, S3 등등) 에 저장됩니다. 하지만 데이터를 분석하고 활용하기 위해서는 이렇게 흩어져서 저장된 데이터들을 한 곳으로 모으는게 필수적입니다. 그래서 저희 팀에서는 이렇게 다양한 소스로 부터 발생해서 다양한 DB에 저장된 데이터를 어떤 과정을 통해 한 곳으로 모을 것인가에 대해서 고민하게 되었습니다. 그리고 고민 끝에 각각의 DB에 저장된 데이터를 하나의 큰 데이터 스토리지에 모을 수 있는 ‘데이터 파이프라인’을 구축하는 계획을 세우게 되었습니다. 하지만 다양한 소스로부터 수집된 수많은 데이터들을 잘 유지해가며 하나의 큰 DB에 모을 수 있는 데이터 파이프라인을 구축하는 것이 쉽지 않았는데요. 이 포스팅을 통해서 버즈빌에서는 어떻게 각각의 데이터들을 수집하고 저장하는지 또 이런 데이터들을 통합하기 위한 파이프라인을 어떻게 구축했는지 공유하고자 합니다. 본격적인 이야기에 앞서 현재 버즈빌에서 모든 데이터가 모이는 데이터 스토리지로 사용 중인 RedShift에 대해 이야기하고 싶습니다. 개인적으로는 정말 쓰면 쓸수록 감탄이 나오는 데이터 스토리지라고 생각합니다. Redshift는 AWS에서 관리하는 SQL기반의 열기반 스토리지(SQL based columnar data warehouse)이며 복잡하고 대규모의 데이터 분석에 적합합니다. 고객들로부터 생성된 수많은 종류의 데이터를 기반으로 다양한 인사이트를 얻고자 하는 많은 기업들(Yelp, Coursera, Pinterest 등)이 사용하고 있는 솔루션 이기도 합니다. 버즈빌에서는 여러가지 특징을 고려하여 Redshift를 도입하게 되었는데요. 그 이유는 아래와 같습니다.  Performance Performance Performance.     Column 기반 스토리지 -> 필요한 Column에만 접근한다.   Join이나 aggregation이 많은 복잡한 쿼리도 쉽게 계산할 수 있다.   분산 저장 방식 (Distributed Storage)   Date Ingestion이 빠르다. (Ingest first, index and clean later)     Horizontal Scalability   sharding이나 clustering에 추가적인 complexity가 필요하지 않다. 데이터가 원래 노드에 저장되기 때문에 horizontal scaling을 위해서는 그냥 추가적인 노드만 붙이면 된다. 다른 AWS서비스들과 쉽게 연동이 가능하다. (장점 이자 단점)    하지만 몇 개의 아쉬운 점들도 있습니다. :  다른 RDBMS와 달리 Mutilple indice를 지원하지 않는다.  1 Distribution Key and 1 Sort Key   MySQL이나 다른 RDBMS처럼 uniqueness나 foreign key constraint를 걸 수 없다.     모은 데이터를 어떤 방식으로 Redshift로 옮겨야 할까요? 버즈빌이 구축한 데이터 파이프 라인은 크게 3갈래의 메인 루트가 있습니다.   1) Athena Preprocessing Batch job을 통해서 (잠금화면 활동, 광고 할당) Why? 전처리 작업(Preprocessing)이 필요한 가장 큰 이유는 들어오는 데이터의 어마어마한 크기 때문입니다. 또 어떤 데이터들은 너무 raw하기 때문에 애널리스트나 데이터 사이언티스트가 분석에 활용할 수 있는 형태로 바꾸기위해 전처리가 필요하기도 합니다. 버즈빌에서는 이런 데이터들을 처리하기 위해서 AWS Athena를 사용하고 있습니다. Athena는 과금 방식이 Athena 쿼리로 읽은 데이터의 사이즈를 기반으로 하기 때문에 다른 EMR이나 MapReduce solution들을 사용했을때보다 상대적으로 적은 비용으로 활용할 수 있다는 장점이 있습니다. How?  먼저 S3로 데이터를 보냅니다. 그 후, Athena를 활용하여 데이터를 가공/처리합니다. 가공된 데이터를 읽어서 Redshift로 보냅니다. (COPY command 활용)  Pros?  서버를 따로 가질 필요가 없습니다. (EMR 클러스터나 서버를 관리할 필요가 없음) 경제적입니다. (S3에서 1TB를 읽을때마다 $5 정도의 비용)  Cons?  사용량이 몰리는 시간대 (12:00 AM UTC)에는 일부 쿼리가 실패할 수 있습니다. -> 중요하고 필수적인 데이터는 Athena가 아닌 다른 방법을 통해 처리하는것이 적합합니다. PRESTO DB의 기능을 (아직은) 온전히 활용할 수 없습니다.     2) Firehose를 통해서 (Impression, Clicks, Device, Events) Why? Kinesis Firehose는 Redshift, Elasticsearch, S3와 같은 최종 목적지까지 다양한 데이터들을 안정적으로 옮길 수 있는 파이프라인을 제공할 뿐 아니라 Fluentd와 매끄럽게 잘 연동된다는 점에서 굉장히 뛰어난 서비스 입니다. Fluentd는 서버로부터 firehose까지 데이터가 안정적이고 꾸준하게 전달 될 수 있도록 도와줍니다.  따라서 firehose와 fluentd의 연동을 통해서 따로 두개의 파이프라인 ( SERVER -> S3, S3 -> Redshift) 을 관리할 필요 없이 데이터 소스부터 최종 저장소까지 이어지는 하나의 파이프 라인만 관리할 수 있게 됩니다. How?  (https://docs.aws.amazon.com/firehose/latest/dev/what-is-this-service.html)  적절한 data format과 원하는 ingestion period를 설정하여 Firehose delivery stream을 만듭니다.   conf["user_activity"] = { "DataTableName": "user_activity", "DataTableColumns": "user_id, app_id, activity_type, timestamp", "CopyOptions": "FORMAT AS JSON "s3://buzzvil-firehose/sample/user_activity/jsonpaths/user_activity_log-0001.jsonpaths" gzip TIMEFORMAT AS "YYYY-MM-DDTHH:MI:SS" ACCEPTINVCHARS TRUNCATECOLUMNS COMPUPDATE OFF STATUPDATE OFF", "jsonpaths_file": "buzzvil-firehose/sample/user_activity/jsonpaths/user_activity_log-0001.jsonpaths", } configuration = { "RoleARN": "arn:aws:iam::xxxxxxxxxxxx:role/firehose_delivery_role", "ClusterJDBCURL": "jdbc:redshift://buzzvil.xxxxxxxxx.us-west-2.redshift.amazonaws.com:5439/sample_db", "CopyCommand": { "DataTableName": sample_table, "DataTableColumns": conf[type]["DataTableColumns"], "CopyOptions": conf[type]["CopyOptions"], }, "Username": db_user, "Password": db_password, "S3Configuration": { "RoleARN": "arn:aws:iam::xxxxxxxxxxxx:role/firehose_delivery_role", "BucketARN": "arn:aws:s3:::firehose_bucket", "Prefix": "buzzvil/user_activity/", "BufferingHints": { "SizeInMBs": 64, "IntervalInSeconds": 60 }, "CompressionFormat": "GZIP", "EncryptionConfiguration": { "NoEncryptionConfig": "NoEncryption", } } }  2. Fluentd docker containers을 각각의 서버에서 세팅하고 실행합니다.  @type tail path /var/log/containers/buzzad/impression.json pos_file /var/log/containers/td-agent/impression-json.pos format none tag firehose.impression @type kinesis_firehose region us-west-2 delivery_stream_name "prod-buzzad-impression-stream" flush_interval 1s data_key message  3. Firehose에서 데이터를 잘 모아서 Redshift 문제없이 보내고 있는지 모니터링 합니다.  Pros?  빠르고 안정적인 데이터 전송이 가능합니다. 모니터링이 편합니다.  Cons?  Schema가 자동으로 바뀌지 않습니다.( Redshift의 Schema를 수동으로 일일히 변경해주어야 합니다.)     3) MySQL Asynchronous Loads를 통해 (Ads, Contents, Ad Provider, Ad Publishers) Why? 여러대의 RDS MySQL DB로부터오는 데이터간의 sync를 맞춰가며 Redshift로 데이터를 복제하기 위해서는 3가지의 테크닉을 활용해야만 합니다. (이 방법은 소개하고 있는 세 메인 루트 중에서 가장 매력도가 떨어지는 방법입니다..) How?  FULL_COPY  MySQL 테이블 전체를 복사해서 SQL insert를 통해서 Redshift에 복사합니다.     INCREMENTAL_COPY  이전에 복사한 가장 마지막 Primary key부터 시작해서 새로생긴 row들을 읽어서 Redshift로 복사합니다.     UPDATE_LATEST_COPY  이전에 복사한 가장 마지막 타임스탬프부터 시작해서 새로 생성되거나 업데이트된 row들을 Redshift로 복사합니다.(중복된 값은 삭제).    Pros?  데이터의 특징에 맞게 잘 조정된 방법입니다. binary log를 통한 Replication보다 훨씬 다루기 쉽습니다.  Cons?  MySQL을 잘 조정하기 위해 여러대의 서버나 lambda를 다루어야만 합니다. -> Redshift sync task를 위해서 안정적인 schema altering을 할 수 있을 만큼 Redshift의 ORM이 발전된 상황은 아닙니다..    어떤 데이터를 다루는지에 따라서 위에서 소개한 3가지 방법 중 어떤 방법을 활용해야할지가 달라진다고 할 수 있습니다. 예를 들어 Transactianl log 같은 데이터들의 경우에는 firehose를 통해 전달하는 방법이나 먼저 aggregate하는 과정을 거친 후에 Redshift에 저장하는 식으로 처리를 해야 합니다. 그리고 MySQL에 저장된 fact table같은 데이터들은 CDC (change data capture) sync method를 통해서 Redshift에 데이터를 전달하고 동기화를 하는 과정이 필요합니다. 버즈빌에서는 위에서 소개해드린 3가지 방법을 적절히 조합해가면서 BD 매니저나 애널리스트들이 서비스간 플랫폼간의 데이터분석을 쉽게 할 수 있는 데이터 환경을 구축하기 위해서 노력하고 있습니다.
조회수 834

웹기반 컨텐츠 저작 도구 셀프(XELF) v1.0 GS인증 획득

웹기반 컨텐츠 저작 도구 셀프(XELF) v1.0 (Web-based Contents Authoring Tool XELF v1.0)이 한국정보통신기술협회(TTA) 소프트웨어 시험인증연구소로부터 GS인증 1등급을 획득하였습니다.  셀프(XELF)는 별도의 프로그램 설치 없이도 접속만으로 웹브라우저 상에서 다양한 용도의 콘텐츠를 저작할 수 있는 디자인 플랫폼입니다. 디자인 전문가가 아니어도 누구나 손쉽게 프리젠테이션, 웹브로셔, 유저 인터페이스, 문서 등 비즈니스 및 교육환경에 필요한 다양한 콘텐츠를 디자인할 수 있습니다. 또, 이렇게 제작된 콘텐츠는 클릭만으로 SNS에 공유하거나 이메일로 전달하는 등 간편하게 활용할 수 있는 장점을 가지고 있습니다.   GS인증은 엄격한 시험을 통해 품질이 우수한 소프트웨어를 인증해주는 국가공인 소프트웨어 품질인증제도로 공공기관에서 우선 구매 대상으로 지정되기도 합니다. ISO 국제표준을 기준으로 SW의 기능성, 신뢰성, 효율성, 사용성, 유지보수성, 이식성, 성능 등을 평가하고 검증을 거쳐 부여되었습니다. ㈜그로비스인포텍은 이번 GS인증을 계기로 디자인 플랫폼으로서의 기술성과에 자신감을 가지고 향후 계획된 베타서비스 준비에 최선을 다하고 있습니다. 더 나은 사용성과 기술적 안정성을 목표로 다양한 환경에 적용하고 테스트를 진행하고 있습니다. 곧이어 더 향상된 성능과 기능으로 찾아뵙길 기대하겠습니다. 감사합니다.
조회수 1874

[H2W@NL] 실패해도 끝까지 간다, COMET팀

네이버랩스의 인재상은 passionate self-motivated team player입니다. 어쩌면 '자기주도적 팀플레이어'라는 말은 형용모순(形容矛盾)일 지도 모릅니다. 하지만 우린 계속 시도했고, 문화는 계속 쌓여갑니다. 다양한 분야의 전문가들이 경계없이 협력하고 스스로 결정하며 함께 도전하는 곳의 이야기를 전합니다. How to work at NAVER LABSH2W@NL 시리즈 전체보기공간 데이터를 디지털라이즈하는 것, 즉 '고정밀 매핑'은 네이버랩스 기술의 시작이 되는 중요한 과제입니다. COMET 프로젝트는 매핑 로봇이나 MMS (mobile mapping system) 차량이 다니기 어려운 복합 지형에서의 매핑 기술을 연구하고, 네이버랩스 매핑 디바이스들의 표준을 개발하는 것을 목표로 합니다. 그런데 이 프로젝트 이전, 많은 시도와 실패가 있었습니다. 물론 실패를 극복해 더 단단한 결과물을 만들어낸다는 아름다운 결말이 현실에서 비일비재하지는 않습니다. 여건도 상황도 이를 쉽게 허락하지 않지만, 무엇보다 사람도 지치기 마련입니다. 그래서 COMET 팀이 더 궁금했습니다. 어떤 일들이 있었는지 들어보았습니다. Q. 어떤 프로젝트인가요?(정은교|TL) 그간의 매핑 디바이스 개발은 주로 고정형이거나 특정 지형에 한정되었죠. 그런데 COMET은 지형 지물에 상관없이 데이터 수집이 가능해야 한다는 것이 전제였습니다. 실내나 도로처럼 규격화된 곳이 아닌 울퉁불퉁한 인도, 계단, 구불구불한 등산로 등등. 지형의 특성과 무관하게 고정밀 데이터를 수집할 수 있어야 합니다. 먼저 백팩 타입 설계를 시작한 이유입니다.프로젝트 이름에 모든 의미가 담겨있다(이성준|PM) 그래서 COMET이라는 프로젝트 명을 정했죠. 우주에는 정해진 궤도를 따라 움직이는 행성들만 있는 것이 아니라 궤도를 가로지르는 혜성도 있죠. COMET 프로젝트는 네이버랩스의 실내 매핑로봇 M1, 도로의 모바일매핑시스템 R1 사이에서 그간 커버하기 힘들었던 공간들을 빈틈없이 연결해주는 역할을 합니다.한 획을 그어보자, 혜성처럼(정성용|하드웨어/펌웨어 설계) 사실 다른 컨셉의 프로젝트들이 계속 있었어요. 그런데 예상치 못했던 내외부 변수들로 여러차례 중단되었죠. 거의 완성 직전인 프로젝트도 있었거든요. 그때 의욕이나 열정이 많이 사라질 뻔 했는데, 성준님이 ‘마지막으로 혜성처럼 회사에 한 획을 그어보자’고 하며 COMET 프로젝트를 제안했던 게 기억나요. 그런 의미의 이름 아니었나요?"COMET 의 핵심 컨셉은 기존의 고정밀 매핑 디바이스들로 접근하기 어려웠던 영역들의 빈틈을 빠짐없이 연결한다는 것입니다. 이동 환경이 비교적 균일한 도로나 실내의 보도에서는 이미 솔루션이 충분한 편입니다. 하지만 아직 고정밀 지도를 만들기 어려운 영역이나 복합 지형들은 여전히 많아요. 그런 곳에서도 COMET을 통해 공간 데이터를 끊김없이 연결할 수 있게 된 것이 가장 큰 성과입니다." 실패라는 것을 팀에서는 어떻게 활용 했나요?실패도 자산화하려면 프로세스가 필요하다(이성준|PM) COMET 이전의 여러 시도와 실패를 통해 깨달은 게 있습니다. 프로젝트의 자산에 대한 것입니다. 중단된다고 그간 쌓아왔던 것이 없어지면 안되죠. 그래서 각 프로젝트를 통해 얻은 경험과 노하우를 자산화하기 위한 프로세스를 만들고자 했습니다. 일단 큰 틀을 잡고, 각 단계는 sprint 방식으로 진행했습니다. 지금 우리가 어디까지 왔는지를 가시적으로 확인할 수 있다는 점도 큰 도움이 되었어요.모든 끝은 새로운 시작으로 연결(천정훈|프로그래밍/하드웨어 설계) 진행되었던 모든 프로젝트 정보들이 정리되고 공개되어 있습니다. 저 역시 이전의 솔루션들을 참고해 개발속도를 높일 수 있었습니다. 이런 정리를 중요하게 생각하는 이유는, COMET이 끝이 아니라 다음 프로젝트로 이어지는 단계라고 생각했기 때문입니다. 애초에 추후 프로젝트에서 활용될 수 있는 기술들에 대한 고려를 많이 하고 있습니다. 예를 들어, 다음 프로젝트에서도 활용할 것을 전제로 각종 센서데이터의 효율적 수집 프로토콜을 설계하거나, circuit board의 펌웨어 업데이트 기능도 적용하여 확장성을 미리 대비해 두는 것이죠.프로세스가 작동하면 일어나는 일(정성용|하드웨어/펌웨어 설계) 저는 사실 COMET도 완료되지 않을 거라 생각했어요. 기술적인 어려움은 아니었어요. 올해 회사의 리더십이나 로드맵이 변화되는 상황에서 이 프로젝트가 안정적으로 끝나는 것이 쉽지 않을 거라 생각했죠. 그런데 그간 쌓인 경험들, 그로 인해 만들어진 단단한 프로세스가 작동하기 시작했습니다. 그래서 모두의 예상보다 빠르게 완료가 되어버렸어요. 정말 말도 안되게 기간 단축이었습니다. 물론, 개발 중엔 하루 하루가 도전이고 위기였죠.담당자라는 개념과 경계를 넘는 것(천정훈|프로그래밍/하드웨어 설계) 분명 개개인이 달성해야 할 목표라는 건 있습니다. 보통 이런 건 명확한 편이죠. 그런데 그것만 각자 잘 한다고 프로젝트가 잘 되는 건 아닙니다. 다른 담당자의 역할이나 완료를 그저 기다리는 것이 아니라, 필요하다고 생각되면 스스로 리드하거나 함께 고민하고 대화했습니다. 팀과 상관없이 해당 분야의 전문가를 찾아 풀어야 할 문제에 대해 편하게 논의할 수 있다는 건 네이버랩스 조직문화의 확실한 강점입니다. 누구든 언제든 쉽게 서로 피드백을 나눌 수 있는 분위기이기 때문에, 고민이 생겼을 때마다 더 잘 해결할 수 있었던 것 같네요.전문가들의 진짜 전문가다운 협업(최문용|GPS 하드웨어 설계) COMET의 GPS 수신이 예상보다 나쁘게 나온 적이 있었어요. 그러면 하드웨어 전문가, 소프트웨어 전문가, GPS 알고리즘 전문가가 총출동합니다. 각각의 전문 분야를 기반으로 다각적으로 관찰하고, 논의하며, 효과적인 대응 방안을 찾으면 기구 파트에서 바로 적용을 해줍니다. 그 결과 우리가 기대하는 성능까지 올릴 수 있었습니다. 그걸 바라보는 저는, 소름이죠! 각자의 업무 경계를 크게 가르지 않고도, 협업을 통해 팀 전체의 전문성을 높일 수 있었어요.너도 코딩 나도 플래닝(정성용|하드웨어/펌웨어 설계) 실제로 우리는 서로의 영역을 구분하지 않고 자연스럽게 영역을 넘나듭니다. 담당자는 정해져 있지만, 그렇다고 개발 및 의사결정을 담당자만 하지 않습니다. 필요하다고 생각되면 누구든 직접 회로를 그려보고, 직접 코드를 작성해보고, 기구를 설계하거나 스스로 프로젝트 계획을 수립합니다.(이재량|기구개발) 물론 현실은 티격태격이죠. 의견 차이가 있을 때는 정말 뜨겁습니다. 서로 화를 내며 논쟁하기도 합니다. (저는 아닙니다) 그런데 결과적으로는 더 좋은 결론에 다다르더라고요. 누구나 자유롭게 의견을 말하고 논쟁할 수 있다는 건 프로젝트 완성도를 위해 정말 중요한 환경입니다. 결국 각자의 분야에서 아주 뛰어난 전문가들이기 때문이죠."전문성을 가진 팀원들간의 자유로운 소통이 주는 장점은 무엇일까요? 각자의 담당 업무 영역이 오버랩되면서 ‘너의 문제’와 ‘나의 문제’라는 경계가 어느 순간 사라진다는 점입니다. 서로의 전문성을 진심으로 인정하고, 서로 다른 분야에 대한 관심과 이해하려는 노력이 있었기 때문에 가능했던 것 같아요. 지금은 농담으로 다음 프로젝트에서 각자 무엇을 담당할지 사다리 타서 정하더라도 프로젝트는 잘 돌아가겠다고 말해요." Q. 앞으로의 목표는?어떤 형태로도 적용 가능한 매핑 디바이스의 표준을 만들 것(정은교|TL) 앞서 말했듯 COMET 프로젝트는 다양한 지형에서 고정밀 공간 데이터를 수집하는 것이 목표였고, 그것이 가능해졌다는 것이 가장 큰 성과입니다. 이 프로젝트를 통해 센서간 조합에서 오는 아주 다양한 문제와 side effect들을 경험하고 해결했습니다. 이러한 정보와 노하우를 바탕으로 네이버랩스 매핑 디바이스들의 표준화를 준비하고 있습니다. 그래야 이후의 많은 매핑 프로젝트에 빠르고 효율적으로 대응할 수 있습니다.(이성준|PM) 실제로 COMET은 그 자체로 끝이 아닙니다. 실제 운용 시간과 환경을 늘려가며 테스트하면서 새로운 개선점을 발견하게 될 것이고, 이러한 과정을 통해 더 다양한 환경과 머신에 적용할 수 있는 확장성 있는 시스템으로 발전시킬 수 있을 것입니다.(이재량|기구개발) 처음에는 기존에 해보지 않았던 타입을 개발해야 한다는 점에서 초기 컨셉 단계부 터 막막했습니다. 지금은 어느새 새로운 소재나 구조를 검토하며 업그레이드를 위한 테스트를 지속하고 있는 상태입니다. 계속 버전업되는 COMET을 기대해주세요.과거의 자산을 잃지 않기 위해 단단한 근간을 마련한다(정성용|하드웨어/펌웨어 설계) 결국 우리가 COMET을 통해 얻어낸 가장 큰 것은, 우리만의 매핑 디바이스 표준을 만들어가고 있다는 점이 아닐까 생각합니다. 앞으로 네이버랩스에서 개발될 매핑디바이스는 그 형태나 목적이 어떻게 되더라도 COMET이 근간이 됩니다. 이제는 프로젝트 방향이 달라질 때마다 컨셉을 새로 설계하는 방식을 벗어나, 그간의 자산을 하나도 잃지 않은 상태에서 지금 가장 효과적인 방식의 매핑 디바이스를 만들 수 있습니다. 이러한 결과를 위해 필요했던 과거의 실패들이었던 것 같습니다.
조회수 2454

사운들리 백엔드 이야기

사운들리는 '귀에 들리지 않는 소리'를 이용해서 컨텐츠를 전달할 수 있는 SaaS 플랫폼을 서비스하고 있습니다.제품의 구성요소는,음파를 송신할 수 있는 송신단음파를 모바일에서 수신할 수 있는 Android, iOS SDK그리고 컨텐츠를 제공하고 데이터를 수집, 분석하는 백엔드로 구성되어 있습니다.오늘은 구성 요소중 백엔드에 대해서 이야기 해보도록 하겠습니다.<그림 1. 사운들리 솔루션 구성도>사운들리의 인프라는 모두가 잘 아시는 아마존 웹 서비스를 이용하고 있으며, 크게 컨텐츠를 제공하는 API서버 부분, 로그를 수집, 분석하는 부분, 그리고 컨텐츠를 관리하는 CMS 부분으로 이루어져 있습니다.소프트웨어 스택Java : 현재 사운들리의 일부 시스템을 제외하고는 전부 자바로 작성되어 있습니다. Node.js로 시작하여 PHP를 거쳐 지금의 자바 기반의 시스템으로 구성하게 되었습니다. 다양한 사람들이 개발을 해오면서 각자 가장 잘할 수 있고, 빠르게 구현할 수 있는 언어로 개발되어 가다 현재의 자바로 통일되어 구성되게 되었습니다.Spring : API서버는 HTTP 기반의 REST API를 이용해 컨텐츠를 전달하고 있으며 스프링 프레임워크를 이용해 개발되었습니다. 이외에도 일부 분석에 스프링 배치를 사용하고 스프링을 편리하게 사용할 수 있게해주는 스프링 부트도 이용하고 있습니다.gRPC : 분산되어있는 서버들끼리 이기종 언어간 통신을 하기 위해서 Protocol Buffers 기반의 gRPC를 이용하고 있으며 서버들의 모니터링하는 서버와 에이전트들 사이의 통신 목적으로 사용합니다.Flume : 분산된 서버들에서 로그를 수집하는 역할을 합니다. 수집된 로그는 파일로 저장하며 실시간으로 볼수 있도록 엘라스틱서치에 같이 저장하고 있습니다. SDK에서 전송되는 로그 또한 웹서버의 엑세스 로그를 플럼 에이전트가 수집하는 방식으로 비동기로 처리하고 있습니다.ElasticSearch : 수집된 로그들을 실시간으로 확인하기 위해서 사용되며 Kibana를 이용해 시각화하고 있습니다.Angular.js : CMS의 프론트엔드는 Angular.js + Bootstrap을 이용해 개발되었으며, Bower를 이용한 라이브러리 관리, Grunt를 이용한 빌드 관리를 하고 있습니다.소프트웨어 개발/운영GIT : 소스코드는 git로 관리하며 Git-Flow를 이용한 브랜치 정책을 수립하여 가져가고 있고 저장소로는 깃허브를 이용합니다.Quality Practice : QA단계에서 제품을 테스트하기 전 개발자들은 QA 프로세스에 맞게 다음 3가지 기준으로 소스 코드의 품질을 관리합니다.코딩 컨벤션 : 사운들리 내부 코딩 컨벤션에 맞게 개발되었는지 확인합니다. Checkstyle의 규칙을 정의 및 자동화합니다.테스트 코드 : 단위 테스트 코드를 작성하며 테스트 결과는 모두 통과되어야 합니다.테스트 커버리지 : 단위 테스트 코드가 작성된 커버리지를 계산하며 현재 60%를 목표로 진행하고 있습니다.젠킨스 : 소스코드 저장소에 변동이 일어나면 젠킨스가 소스코드를 빌드하고 위에서 언급한 세가지에 대한 리포트를 작성합니다.소나큐브 : 무료 오픈소스로 코드 정적 분석을 해주며 및 QA 리포트를 같이 볼 수 있습니다.슬랙 : 인력이 적은 저희 팀도 슬랙을 적극적으로 개발/운영에서 사용하고 있습니다.팀 커뮤니케이션 : 팀원들 간의 의사사통을 위한 주요 수단으로 모든 팀원이 함께 사용하고 있습니다.분석 리포트 : 젠킨스나 배치를 통해 분석된 데이터들은 분석이 끝난 지표들은 슬랙으로 결과를 전송하여 모든 팀원이 볼 수 있도록 공유하고 있습니다.서버 모니터링 : 서버들의 이상 징후 감지나 배치 오류등을 슬랙을 통해 담당자에게 전송하여 조치할 수 있도록 합니다.애플리케이션 및 서버 모니터링 : 애플리케이션의 모니터링은 Naver에서 오픈소스로 공개한 핀포인트를 사용하고 있고, 서버 상태 모니터링을 위해 자체 개발한 모니터링 시스템을 사용하고 있습니다. 모니터링 데이터 수집을 하는 에이전트와 전체 시스템의 데이터를 관장 하는 서버간에는 gRPC를 이용하여 상태 체크를 합니다. 서버의 상태에 문제가 있을 때에는 slack을 통해 담당자들에게 알람을 주도록 시스템 설계를 하였습니다.개발 문화개발자들은 각각 개발을 할때 정해진 정책에 맞춰 브랜치를 만들어 개발합니다.각각 개발된 소스들은 저장소인 깃허브에 푸시된 후 깃허브의 댓글 기능을 이용하거나 오프라인을 통해 코드 리뷰를 진행합니다.리뷰가 끝난 후 합쳐진 소스는 QP 활동을 통해 분석이 됩니다.빌드가 실패할 경우 커피를 사야합니다 ^^ (커피를 얻어 먹으려는 것이 아닌 소스코드를 푸시하기 전 잘 확인하자는 취지입니다) AWSEC2 : 사운들리의 대부분의 구성 요소인 API서버와 로그 수집, 분석 서버, 엘라스틱서치, 플럼, CMS등이 모두 EC2에 구축되어 있습니다.RDS : 컨텐츠의 주 저장소로 데이터베이스 관리의 용이성을 고려하여 RDS의 Multi-AZ에 배포하여 Active-Standby로 구성되어 있으며 이 데이터들은 레디스와 로컬 캐시를 이용하여 API서버에서 활용하고 있습니다.S3 : 컨텐츠에 포함된 각종 정적 데이터들이 저장되며 수집된 로그들도 저장하여 보관됩니다. EMR : 로그 수집서버를 통해 S3에 저장된 로그들은 EMR을 이용해서 분석됩니다.Beanstalk : 개발 서버의 배포에 사용됩니다. 최근 IntelliJ의 플러그인이 업데이트 되면서 IntelliJ 15버전을 지원하게 되므로써 로컬에서 개발하고 개발 서버에 배포까지 편리하게 하고 있습니다. VPC : 인터넷이 필요 없는 서버들은 VPC 내부 private-zone에 배포 및 ELB를 통해 외부에서 접근하도록 구성되어 있습니다.<그림 2. AWS 배포 구성도>이상으로 사운들리에서 사용하고 있는 백엔드 소프트웨어들을 소개해 보았습니다. 적은 인력으로 빠르게 사업을 진행하는 스타트업에서는 비즈니스에 집중할 수 있도록 도와주는 다양한 툴이나 오픈소스를 이용하여 많은 도움을 받을 수 있는 것 같습니다. 또한 코드를 잘 작성하여 에러를 줄이는 것도 필요하지만 여유가 많지 않으면 최소한 제품의 에러에 빠르게 대응할 수 있도록 하는 방법도 필요한 것 같습니다.#사운들리 #개발 #개발자 #문제해결 #프레임워크 #스킬스택 #스택 #인사이트
조회수 4999

Bluetooth Low Energy(BLE) 파헤치기

1. What is BLE?스마트폰이 출시되어 대중화가 될 무렵, ‘스마트’한 개념의 밴드, 워치, 글래스 등이 출시되면서 웨어러블 디바이스 시장이 태동하기 시작했다. 그리고, 2015년 상반기, 애플워치의 등장으로 작은 생태계를 이루고 있던 웨어러블 디바이스들이 다시 한번 각광을 받게 되었다. 각기 생긴 모습은 다르지만 이들의 공통점은 스마트폰과 연동되어 작동한다는 것이었다. 과거부터 기기들간의 단거리 무선통신은 Bluetooth라는 기술이 이용되었다. Bluetooth가 공식적으로 등장한지 약 16년이라는 세월이 흘렀지만, 여전히 기기간의 무선통신에는 Bluetooth가 사용된다. 하지만, 지금 사용되는 Bluetooth는 기존과는 다른 방식이다. 바로 BLE라는 특징을 가진 Bluetooth인데, 바로 이것이 오늘날 다양한 종류의 웨어러블 디바이스들이 태어날 수 있었던 원동력이 되었다. 그렇다면 BLE라는 것이 도대체 무엇일까?그림1. BLE가 뭐지? 먹는건가?과거부터 기기들간의 무선 연결은 주로 Bluetooth라는 기술을 이용했는데, 이들은 기기간에 마스터, 슬레이브 관계를 형성하여 통신하는 Bluetooth Classic이라는 방식을 이용했다. 사람들이 이러한 기기들을 이용하면서 많이 염려했던 것은 ‘Bluetooth를 연결하면 베터리가 빨리 소모된다’, ‘사용하지 않을 때는 Bluetooth 꺼놓아야지’ 등과 같은 베터리 관련된 문제들이었다. 사실이었다. Bluetooth Classic은 다른 디바이스를 무선으로 연결을 하여 사용할 수 있는 편리함을 주었지만, 연결이 되는 동안에는 베터리를 빠르게 소모시켰기 때문에 사용하는 데에 많은 불편함이 있었다.2010년, 새로운 Bluetooth 표준으로 Bluetooth 4.0 이 채택이 된다. 기존의 Bluetooth Classic과의 가장 큰 차이는 훨씩 적은 전력을 사용하여 Classic과 비슷한 수준의 무선 통신을 할 수 있다는 점이었다. 이는 당시 Bluetooth의 최대 단점이었던 과도한 베터리를 소모 문제를 해결하는 기술이었기 때문에, Bluetooth 관련 업계에 큰 반향을 일으켰다. 이렇게 저전력을 이용하여 무선통신을 하는 특징을 Bluetooth Low Energy (이하 BLE) 라고 부르는데, Bluetooth 4.0 이후의 버전들은 이 용어로 대체되서 불리기도 한다. 최근 출시되고 있는 스마트 밴드, 워치, 글래스 등의 웨어러블 무선통신 기기들의 대부분은 이 BLE 방식을 이용하여 무선 통신을 한다.Bluetooth Smart Ready, Smart, ClassicBLE 기술이 등장하면서 Bluetooth 디바이스들은 아래와 같이 3가지로 분류 되었다.그림2. BLE 3가지 분류Bluetooth 4.0과 함께 새롭게 등장한 Bluetooth Smart Ready, Bluetooth Smart에 대해서 살펴보면,Bluetooth Smart Ready 디바이스는 Bluetooth Classic 및 저에너지 Bluetooth 무선통신 (BLE)을 지원하기 때문에 “듀얼 모드” 라디오라고 불린다. 따라서, 이들은 현재 시장에 나와 있는 수억 종의 Bluetooth 디바이스들에 대한 역방향 호환성을 가진다. 종류에는 스마트폰, 태블릿, PC, TV 그리고 셋탑박스 및 게임 콘솔 등이 있다. 이런 디바이스들은 클래식 Bluetooth 디바이스 및 Bluetooth Smart 디바이스들로부터 데이터를 받아, 이들을 유용한 정보로 변환시키는 Bluetooth 시스템의 허브라고 할 수 있다.Bluetooth Smart 디바이스 내에 있는 라디오는 “싱글모드” 라디오라 불리는데, BLE 연결만을 지원한다는 의미이다. 이들은 기존의 Bluetooth Classic 디바이스들과 호환이 되지 않고 듀얼모드 라디오를 가진 Bluetooth Smart Ready 디바이스 혹은 제조업체에 의해 호환성이 명시된 특정 Bluetooth 디바이스에만 연결이 가능하다. Bluetooth Smart 디바이스들은 ‘우리 집의 창문은 모두 잠겨 있는지’, ‘내 인슐린 농도는 얼마인지’, ‘오늘 내 몸무게는 몇 킬로그램인지’ 등과 같이 특정한 형태의 정보를 수집해, Bluetooth Smart Ready 디바이스로 보내기 위해 만들어진 디바이스이다. 종류에는 심박 모니터, 스마트 손목시계, 창문 및 현관 보안 센서, 자동차 키 체인, 그리고 혈압 팔찌 등이 있다.이 글에서는 BLE를 사용하는 디바이스들이 어떤 과정으로 서로 연결되어 통신을 하는지 그리고 이 과정들을 tracking 할 수 있는 장비인 Ubertooth 에 대해 내용을 정리해서 공유해보고자 한다.2. How they communicate?BLE를 지원하는 디바이스들은 기본적으로 Advertise(Broadcast) 과 Connection 이라는 방법으로 외부와 통신한다.Advertise Mode ( = Broadcast Mode)특정 디바이스를 지정하지 않고 주변의 모든 디바이스에게 Signal을 보낸다. 다시 말해, 주변에 디바이스가 있건 없건, 다른 디바이스가 Signal을 듣는 상태이건 아니건, 자신의 Signal을 일방적으로 보내는 것이라고 생각하면 된다. 이 때, Advertising type의 Signal을 일정 주기로 보내게 된다.Advertise 관점에서, 디바이스의 역할은 다음과 같이 구분된다.Advertiser ( = Broadcaster) : Non-Connectable Advertising Packet을 주기적으로 보내는 디바이스.Observer : Advertiser가 Advertise를 Non-Connectable Advertising Packet을 듣기 위해 주기적으로 Scanning하는 디바이스.그림3. Advertiser and ObserverAdvertise 방식은 한 번에 한 개 이상의 디바이스와 통신할 수 있는 유일한 방법이다. 주로 디바이스가 자신의 존재를 알리거나 적은 양(31Bytes 이하)의 User 데이터를 보낼 때도 사용된다. 한 번에 보내야 하는 데이터 크기가 작다면, 굳이 오버헤드가 큰 Connection 과정을 거쳐서 데이터롤 보내기 보다는, Advertise를 이용하는 것이 더 효율적이기 때문이다. 게다가 전송할 수 있는 데이터 크기 제한을 보완하기 위해 Scan Request, Scan Response을 이용해서 추가적인 데이터를 주고 받을 수 있다 (이에 대해서는 뒤에 자세히 설명한다). Advertise 방식은 말 그대로 Signal을 일방적으로 뿌리는 것이기 때문에, 보안에 취약하다.Connection Mode양방향으로 데이터를 주고받거나, Advertising Packet으로만 전달하기에는 많은 양의 데이터를 주고 받아야 하는 경우에는, Connection Mode로 통신을 한다. Advertise처럼 ‘일대다’ 방식이 아닌, ‘일대일’ 방식으로 디바이스 간에 데이터 교환이 일어난다. 디바이스간에 Channel hopping 규칙을 정해놓고 통신하기 때문에 Advertise보다 안전하다.Connection 관점에서 디바이스들의 역할은 다음과 같이 구분된다.Central (Master) : Central 디바이스는 다른 디바이스와 Connection을 맺기 위해, Connectable Advertising Signal을 주기적으로 스캔하다가, 적절한 디바이스에 연결을 요청한다. 연결이 되고 나면, Central 디바이스는 timing을 설정하고 주기적인 데이터 교환을 주도한다. 여기서 timing이란, 두 디바이스가 매번 같은 Channel에서 데이터를 주고 받기 위해 정하는 hopping 규칙이라고 생각하면 된다.Peripheral (Slave) : Peripheral 디바이스는 다른 디바이스와 Connection을 맺기 위해, Connectable Advertising Signal을 주기적으로 보낸다. 이를 수신한 Central 디바이스가 Connection Request를 보내면, 이를 수락하여 Connecion을 맺는다. Connection을 맺고 나면 Central 디바이스가 지정한 timing에 맞추어 Channel을 같이 hopping을 하면서 주기적으로 데이터를 교환한다.그림4. Central and Peripheral3. Protocol Stack디바이스들은 Bluetooth로 통신을 하기 위한 Protocol Stack을 가지고 있다. 일반적으로 네트워크 통신을 하기 위해서는, 통신을 위한 규약인 Protocol을 정의해야 되는데, 이렇게 정의된 Protocol들을 층층이 쌓아놓은 그룹이 Protocol Stack이다. Bluetooth Signal Packet을 수신하거나 송신할 때, 이 Protocol Stack을 거치면서 Packet들이 분석되거나 생성된다.그림5. Protocol Stack위 그림에서 볼 수 있듯이 Protocol Stack은 가장 아랫단부터 크게 Controller, Host, Application 로 나뉜다. 여기서는 Connection 과정에서 필요한 부분인 Physical Layer, Link Layer, Generic Access Profile(GAP), Generic Attribute Profile(GATT)에 대해서 알아볼 것이다.3.1 Physical LayerPhysical Layer에는 실제 Bluetooth Analog Signal과 통신할 수 있는 회로가 구성되어 있어서, Analog 신호를 Digital 신호로 바꾸어 주거나 Digital 신호를 Analog 신호로 바꾼다. 또한 Bluetooth에서는 2.4 GHz 밴드를 총 40개의 Channel로 나누어 통신을 한다. 40개 Channel 중 3개 Channel은 Advertising Channel 로써 각종 Advertising Packet을 비롯하여 Connection을 맺기 위해 주고 받는 Packet들의 교환에 이용된다. 나머지 37개의 Channel은 Data Channel 로써 Connection 이후의 Data Packet 교환에 이용된다.그림6. Channels3.2 Link LayerPhysical Layer의 바로 윗단에는 Link Layer이 있다. Link Layer은 하드웨어와 소프트웨어의 조합으로 구성되어 있다. 하드웨어 단에서는 높은 컴퓨팅 능력이 요구되는 작업들 (Preamble, Access Address, and Air Protocol framing, CRC generation and verification, Data whitening, Random number generation, AES encryption 등)이 처리되고, 소프트웨어 단에서는 디바이스의 연결 상태를 관리한다. 또한 통신하는데 있어서 디바이스의 Role을 정의하고 이에 따라 변경되는 State를 가지고 있다.RoleMaster : 연결을 시도하고, 연결 후에 전체 connection을 관리하는 역할.Slave : Master의 연결 요청을 받고, Master의 timing 규약을 따르는 역할.Advertiser : Advertising Packet을 보내는 역할.Scanner : Advertising Packet을 Scanning하는 역할. Scanner는 아래와 같은 2가지 Scanning 모드가 있다.Passive Scanning : Scanner는 Advertising Packet을 받고 이에 대해 따로 응답을 보내지 않는다. 따라서 해당 Packet을 보낸 Advertiser는 Scanner가 Packet을 수신했는지에 대해서 알지 못한다.Active Scanning : Advertising Packet을 받은 Scanner는 Advertiser에게 추가적인 데이터를 요구하기 위해 *Scan Request라는 것을 보낸다. 이를 받은 Advertiser는 *Scan Response로 응답한다.Scan Request, Scan Response : Advertising Packet type의 한 종류이다. 앞서, 31bytes 이하의 User data에 대해서는 Advertising Signal Packet에 넣어서 보낼 수 있다고 하였다. 하지만 31bytes보다는 크지만, Commection까지 맺어서 보내기는 오버헤드가 큰 데이터가 있을 때, Scan Request, Scan Response를 이용하면 두 번에 걸쳐서 데이터를 나눠 보낼 수 있게 된다. Advertising Packet을 받은 Scanner는 추가적인 User Data(예를 들어, Peripheral 디바이스의 이름)를 얻기 위해 Scan Request를 보내게 된다. Scan Request를 받은 Advertiser는 나머지 데이터를 Scan Response Signal에 담아서 보낸다.이들은 크게 Connection 전의 역할(Advertiser, Scanner), 후의 역할(Master, Slave)로 분류된다.StateLink Layer는 5가지 State를 가지고 있는데, 각 디바이스는 서로 연결이 되는 과정에서 이 State를 변화시킨다. 다음과 같은 5개의 State가 존재한다.Standby State : Signal Packet을 보내지도, 받지도 않는 상태.Advertising State : Advertising Packet을 보내고, 해당 Advertising Packet에 대한 상대 디바이스의 Response를 받을 수 있고 이에 응답할 수 있는 상태.Scanning State : Advertising Channel에서 Scaning하고 있는 상태.Initiating State : Advertiser의 Connectable Advertising Packet을 받고난 후 Connetion Request를 보내는 상태.Connection State : Connection 이후의 상태.아래 그림은 각각의 State를 Diagram으로 나타낸 것이다.그림7. Link Layer State3.3 Generic Access Profile (GAP)Generic Access Profile (GAP)는 서로 다른 제조사가 만든 BLE 디바이스들끼리 서로 호환되어 통신할 수 있도록 해주는 주춧돌 역할을 한다. 즉, 어떻게 디바이스간에 서로를 인지하고, Data를 Advertising하고, Connection을 맺을지에 대한 프레임워크를 제공한다. 그래서 GAP는 최상위 Control Layer라고도 불린다. Advertising Mode일 때, GAP에서 Advertising Data Payload와 Scan Response Payload를 포함할 수 있다.또한 GAP에서는 BLE 통신을 위해 Role, Mode, Procedure, Security, Additional GAP Data Format 등을 정의한다. 이들은 실제 API와 직접적으로 많은 연관이 있기 때문에 그 내용이 상당히 많지만, 여기서는 BLE Connection과 관련이 있는 Role에 대해서만 알아보겠다.RoleBroadcaster : Link Layer에서 Advertiser 역할에 상응한다. 주기적으로 Advertising Packet을 보낸다. 예를 들면, 온도센서는 온도데이터를 자신과 연결된 디바이스에게 일정주기로 보낸다.Observer : Link Layer에서 Scanner 역할에 상응한다. Broadcaster가 뿌리는 Advertising Packet에서 data를 얻는다. 온도센서로부터 온도데이터를 받아서 디스플레이에 나타내는 테블릿 컴퓨터의 역할이다.Central : Link Layer에서 Master 역할과 상응한다. Central 역할은 다른 디바이스의 Advertising Packet을 듣고 Connection을 시작할 때 시작된다. 좋은 성능의 CPU를 가지고 있는 스마트폰이나, 테블릿 컴퓨터들의 역할이다.Peripheral : Link Layer에서 Slave 역할과 상응한다. Advertising Packet을 보내서 Central 역할의 디바이스가 Connection을 시작할 수 있도록 하게끔 유도한다. 센서기능이 달린 디바이스들의 역할이다.3.4 Generic Attribute Profile (GATT)BLE Data 교환을 관리하는 GATT는 디바이스들이 Data를 발견하고, 읽고, 쓰는 것을 가능하게 하는 기초적인 Data Model과 Procedure를 정의한다. 그래서 GATT는 최상위 Data Layer라고도 불린다. 디바이스간에 low-level에서의 모든 인터렉션을 정의하는 GAP와는 달리, GATT는 오직 Data의 Format 및 전달에 대해서만 처리한다. Connection Mode일 때, GATT Service와 Characteristic을 이용하여 양방향 통신을 하게 된다. Service와 Characteristic에 대한 내용은 여기를 참고하길 바란다.GATT도 Data 처리와 관련해서 다음과 같은 역할을 정의한다.RoleClient : Server에 Data를 요청한다. 하지만 처음에는 Server에 대해서 아는 것이 없기 때문에, Service Discovery라는 것을 수행한다. 이 후, Server에서 전송된 Response, Indication, Notification을 수신할 수 있다.Server : Client에게 Request를 받으면 Response를 보낸다. 또한 Client가 사용할 수 있는 User Data를 생성하고 저장해놓는 역할을 한다.4. Packet TypeBLE 통신에서는 두 가지 종류의 패킷인 Advertising Packet, Data Packet만이 존재한다. Connection을 맺기 전에는 Advertising Packet type, 맺은 후에는 Data Packet type으로 Signal을 생성한다. Data Packet은 하나로 통일되지만, Advertising Packet은 특정 기준에 따라서 다음과 같은 성질들을 갖는다.ConnectabilityConnectable : Scanner가 Connectable Advertising Packet을 받으면, Scanner는 이를 Advertiser가 Connection을 맺고 싶어한다는 신호로 받아들인다. 그러면 Scanner는 Connection Request (이하 CONNECTREQ)를 보낼 수 있다. 해당 Connectable Signal을 보낸 Advertiser는 Scanner가 CONNECTREQ가 아닌 다른 타입의 Signal을 보내면 해당 Packet을 무시하고 다음 Channel로 이동하여 계속 Advertising을 진행한다.Non-Connectable : Non-Connectable Packet을 받은 Scanner는 CONNECT_REQ를 보낼 수 없다. 주로 Connection 목적이 아닌, Data 전달이 목적일 때 쓰인다.ScannabilityScannable : Scanner가 Scannable Advertising Packet을 받으면, Scan Request (이하 SCANREQ)를 보낼수 있다. Scannable Signal을 보낸 디바이스는 Scanner가 SCANREQ가 아닌 다른 타입의 Signal을 보내면 해당 Packet을 무시하고 버린다.Non-Scannable : Non-Scannable Signal을 받은 Scanner는 SCAN_REQ를 보낼 수 없다.DirectabilityDirected : Packet안에 해당 Signal을 보내는 디바이스의 MAC Address와 받는 디바이스의 MAC Address가 들어있다. MAC Address 이외의 데이터는 넣을 수 없다. 모든 Directed Advertising Packet은 Connectable 성질을 갖는다.Undirected : 해당 Signal을 받는 대상이 지정되어 있지 않다. Directed Advertising Packet과는 다르게, 사용자가 원하는 데이터를 넣을 수 있다.위의 내용을 종합하면, Advertising pakcet을 아래와 같이 4가지 type으로 나눌 수 있다.그림6. Advertising Packet Type5. How they really communicate?BLE 통신의 핵심은 ‘timing’이다.Before ConnectionConnection 전, 디바이스는 3개의 Advertising Channel을 이용해서 데이터를 주고 받는다고 했다. 이들은 이 3개의 Channel을 자신만의 time interval로 hopping한다. 서로의 hopping 규칙이 일치하지 않기 때문에 Channel이 서로 엇갈리는 경우가 많을 것이다. 예를 들어, Advertiser는 1번 Channel에 Advertising Packet을 보냈는데, 같은 시간에 Scanner는 3번 Channel에 대해서 Scanning을 하게 되면 데이터 전달이 되지 않는 것이다. 하지만 이러한 hopping이 빠르게 자주 일어나기 때문에, 두 디바이스가 같은 Channel에 대해 Advertising와 Scanning이 발생하는 경우도 많이 생긴다. 이 경우에 서로 데이터를 주고 받을 수 있다.After ConnectionConnection이 되면, Advertising은 종료되고 기기들은 Central, Peripheral 중 하나의 역할을 하게된다. Connection을 개시한 기기가 Central이며, Advertiser가 Peripheral이 된다. 그리고 두 디바이스는 엇갈렸던 hopping 규칙을 통일시킨다. 그렇게 함으로써, 매번 같은 채널로 동시에 hopping하면서 Signal을 주고 받을 수 있게 된다. 이는 둘 간의 Connection이 끊어질 때까지 지속된다.6. How they connect each other?디바이스간의 BLE 연결을 iPhone과 Zikto Walk와의 연결과정으로 설명하면 다음과 같다.1) Zikto Walk가 Advertising Channel을 hopping하면서 Advertising Packet을 보낸다.(Zikto Walk의 Advertising Packet 유형은 ADV_IND이다)2) iPhone Bluetooth를 켠 후, Zikto 앱에 Zikto Walk를 등록한다. iPhone은 Advertising Channel을 hopping하면서 Scan을 하다가 연결하려는 Zikto의 디바이스 이름 등의 추가적인 정보를 얻기위해 SCAN_REQ를 보낸다.3) SCANREQ를 받은 Zikto Walk는 SCANRSP를 보낸다.4) Pairing이 완료되고, Zikto Walk는 다시 Advertising Packet을 다시 일정 주기마다 보낸다.5) iPhone에서 Zikto Walk로부터 걸음 수 등의 Data를 받기 위해 Sync 버튼을 누른다. 이 버튼을 누르면 iPhone은 CONNECT_REQ를 보낸다.6) Zikto와 iPhone은 서로 Acknowledging을 시작하고, timing 정보 등을 동기화 한다.7) Connection이 완료된다.8) Connection이 완료된 후, Service Data, Characteristic Data 등에 대한 Data 교환이 일어난다.9) iPhone과 Zikto Walk간에 Data Sync가 완료되면, Connection이 해제되고, 다시 Advertising Packet을 보낸다. 이를 그림으로 표현하면 아래와 같다.그림6. Advertising Packet Type7. Ubertooth디바이스간 BLE를 이용한 통신 과정에 대해 알고나니, Bluetooth Signal Packet도 Capturing 할 수 있을 거라는 생각이 들었다. 검색을 해 본 결과, 오픈소스 Bluetooth Test tool인 Ubertooth라는 장치로 디바이스간의 BLE 통신을 tracking 할 수 있다는 사실을 알게 되었다. 가격은 100달러로 생각보다 저렴했지만 국내에서는 구매할 수가 없었다. 그렇다고 궁금한 것을 해보지도 않고 포기하는 것은 엔지니어의 마인드가 아니지 않겠는가. 직접 아마존 (www.amazon.com)에서 해외구매를 하였다. 이렇게 바다 건너 멀리서 날아온 Ubertooth를 사용했던 경험을 바탕으로, Ubertooth의 원리와 BLE 통신에 대해서 조금 더 자세히 설명을 해보고자 한다.Ubertooth는 10cm정도의 몸체와 그와 비슷한 길이의 안테나를 가지고 있는 매우 작고 귀여운 모양이다. 이것이 이름하여 Ubertooth!그림8. Ubertooth오픈소스이기 때문에 모든 소스가 공개되어 있고, 소스를 빌드하고 사용하는 방법도 Ubertooth Github 및 Ubertooth Blog에 잘 나와 있어서 사용하기가 수월했다.How it works?Ubertooth는 크게 Bluetooth Classic을 tracking하는 기능과 BLE를 tracking하는 기능으로 나뉘는데, 여기서는 BLE 통신을 tracking 하는 원리에 대해서 다루겠다.BLE는 앞에서 언급했다시피, Connection 전, 후로 통신하는 방법이 다르다. 그리고 위의 내용들을 꼼꼼히 읽은 독자라면 BLE 통신에서 가장 중요하다고 언급했던 timing 이라는 것을 기억할 것이다. timing 은 BLE 통신에서 굉장히 중요한 요소이기 때문에, 보다 더 자세하고 쉽게 설명을 해보겠다.종이컵 전화기를 사용하여 대화를 해야하는 두 사람이 있다. 종이컵 전화기는 총 40개가 놓여져 있다. 이 두 사람은 40개 전화기 중 하나를 사용해서 대화를 주고 받고, 일정시간 뒤에 다음번 전화기를 이용해야 한다. 이러한 커뮤니케이션 방식에서 소통을 하기 위해서는 한 전화기로 얼마만큼의 시간동안 통화를 할 것인지, 다음 전화기는 어떤 전화기를 사용할 것인지, 그리고 어떤 방식으로 자신들의 대화를 다른 사람들의 대화들로부터 구분할 것인지 등에 대해 알아야 할 것이다. 이것들이 위에서 말했던 timing 관련 정보이다.실제 BLE 통신에서 timing 과 관련된 정보들은 다음과 같다 : Access Adress, CRC Info, Hop Interval, Hop Increment (해당 내용들에 대한 자세한 설명은 여기를 참고하기 바란다). BLE 통신을 하는 디바이스들은 이 timing 관련 정보를 동기화하여, Connection이 맺어진 이후에 해당 규칙에 따라 Channel을 hopping하면서 데이터를 주고 받는다. Ubertooth는 바로 이 정보를 알아내어, Master, Slave와 같은 패턴으로 Channel을 hopping하면서 대화를 엿듣는다. 아까 말한 종이컵 전화기에 빗대어 말하면, 제 3자(Ubertooth)가 두 사람이 정한 대화 규칙을 알아내서, 매번 이들이 전화기를 바꿔가며 대화를 할 때 마다 해당 전화기의 대화 내용을 엿듣는 것이다. 굉장히 흥미로운 방법이 아닐 수 없다. 그렇다면 Ubertooth는 어떻게 이 정보를 알아낼까?Before Connection두 디바이스가 연결되기 전, Ubertooth가 timing 관련 정보를 알아내는 방법은 매우 간단하다. Scanner가 Advertiser에게 Connection을 맺기위해 보냈던 CONNECT_REQ을 기억하는가? 공교롭게도 해당 패킷에는 이 네 가지 정보가 전부 들어있다. Ubertooth는 그 정보를 추출해내어 저장해 두고, 그 규칙에 맞게 Channel을 hopping하면서 Signal Data를 전부 엿듣는다.그림9. Ubertooth로 Capture한 CONNECT_REQ packetAfter Connection이미 연결된 디바이스들은 CONNECT_REQ를 보낼 일이 없다. 그러면 Ubertooth는 Connection 이후의 상황에 대해서는 Signal Data를 엿듣지 못하는 것일까? 아니다. Connection 이후의 상황에 대해서 Ubertooth는 다음과 같은 방법을 이용한다.BLE Signal Packet은 Advertise Mode이든 Connection Mode이든간에 무조건 하나의 Signal Packet format만 존재하기 때문에, Packet마다 특정 정보가 존재하는 부분은 어느 Packet에서나 똑같다. 4가지 정보 중 Access Address라는 것은 모든 Signal Packet마다 존재한다. Access Address라는 것은 두 디바이스간의 Unique한 Connection을 나타내는 4bytes 크기의 Identifier로써, CONNECT_REQ를 보내는 디바이스에 의해 랜덤하게 생성된다. Ubertooth는 37개의 Data Channel을 hopping하면서 모든 Data Packet의 Access Address를 추출해내어 Look Up Table 형태로 저장해 놓는다. 그리고는 각각의 Access Address가 등장한 횟수를 세게 되는데, 가장 먼저 특정 횟수만큼 등장한 Access Address를 target으로 잡는다. 나머지 3가지 정보는 각각 추출해내는 방법 및 알고리즘이 따로 존재하는데 해당 내용도 위에 언급한 사이트에 잘 나와있다. 이렇게 해서 네 가지 정보를 알아낸 Ubertooth는 두 디바이스와 같은 패턴으로 Channel을 hopping하면서 Signal Data를 엿듣는다.그림10. Ubertooth로 Capture한 Aceess Address과 나머지 3가지 정보들이렇게 보면, Ubertooth로 모든 것을 할 수 있을 것처럼 보이지만, 몇 가지 한계점이 있기도 하다. Ubertooth가 timing 관련 정보를 얻어내는 과정에 대해 다시 한 번 생각해보길 바란다. 잘 모르겠다면, 직접 Ubertooth 구매하여 테스트를 해보는 것도 엔지니어로써 굉장히 좋은 경험이 될 것이다.8. ConclusionBLE 통신과 이를 tracking하는 Ubertooth에 대해서 알아보았다. 매우 장황한 내용처럼 보이지만 이것도 매우 압축해서 설명한 것이다. 하나하나 디테일하게 쓰기 보다는 BLE를 처음 접하는 사람이 최대한 이해하기 쉽도록 작성하는 것에 초점을 맞추었다. 위의 내용들을 바탕으로, 독자들이 BLE에 더 넒고 깊은 지식을 얻게 되었으면 하는 바램이다. 글을 읽으면서 Bluetooth Classic은 어떻게 통신하는지에 대해 궁금하신 분들도 있을거라 생각한다. 이에 대해서 간단히 언급하자면, Bluetooth Classic 통신 방식은 BLE보다 훨씬 더 복잡하다. BLE에 대해서 어느 정도 알게 되었다면, Bluetooth Classic에 도전해보는 것도 괜찮을 것이다. BLE내용과 관련해서 보충이 필요한 내용이나, 관련 경험 혹은 궁금한 점 등에 대해서 아낌없이 조이와 공유해주길 바란다.9. ReferenceAkiba, “Getting Started with Bluetooth Low Energy: Tools and Techniques for Low-Power Networking”, O’Reilly Media(2015)http://www.slideshare.net/steveyoon77/bluetooth-le-controllerhttp://www.hardcopyworld.com/ngine/aduino/index.php/archives/1132https://www.bluetooth.org/ko-kr/bluetooth-brand/smart-marks-faqshttp://trvoid.blogspot.kr/2013/05/ble.htmlhttp://blog.lacklustre.net/posts/BLEFunWithUbertooth:SniffingBluetoothSmartandCrackingItsCrypto/#조이코퍼레이션 #개발팀 #개발자 #개발환경 #업무환경 #인사이트 #경험공유
조회수 2302

JPassKit 적용중 오류 발생

서비스에서 ios wallet을 제공하려고 하니, 예전과는 다르게 서버단 통신을 통해 인증받는 절차가 추가로 생겼단다. 다만, 애플에서 제공하는 서버쪽 데모를 보면 ruby로 만들어져있다. 왜 하필 루비인가? swift도 아니고… 여튼 그걸 java로 porting하려니 이미 만들어 놓은 것이 있을 것 같아서 구글링했더니, jpasskit이 그나마 제일 fork도 많이 되고, 사용도 하는 것 같아서 lib dependency를 추가했다.<!-- PassKit --> de.brendamour jpasskit 0.0.8 개발을 완료했는데, Test Case에서 오류가 나타나기 시작했다.com.fasterxml.jackson.databind.JsonMappingException: Can not resolve PropertyFilter with id 'validateFilter'; no FilterProvider configured난 jackson filter를 바꾼 적이 없는데 왜 에러가 나는 것인가? 처음에는 jpasskit issue를 보고 jackson lib의 version 호환성 문제가 있는 것 같아서 아래처럼 dependency처리를 했다.<!-- PassKit --> de.brendamour jpasskit 0.0.8 com.fasterxml.jackson.core jackson-core 위의 오류가 해결된 것처럼 보여서 SNAPSHOT version을 만들었는데, 됐다안됐다한다. 예를 들어서 local profile에서 하면 되고, develop profile에서 하면 오류나고… 혹은 전체 junit을 모두 돌리면 에러가 발생하는데, 에러나는 class만 테스트 돌리면 성공하고 ㅠ.ㅠ그래서 해당 소스를 파보다가 문제점을 발견하였다.우리의 프로젝트에서는 pojo type인 jackson object mapper를 bean으로 등록해서 사용하고 있다. bean으로 등록하면 몇 가지 장점이 있는데, 자세한 설명은 이 글의 범위를 벗어나기 때문에 생략한다.@Primary @Bean public ObjectMapper objectMapper() { ObjectMapper objectMapper = new CustomObjectMapper(); initializeObjectMapper(objectMapper); return objectMapper; }그래서 Object Mapper는 singleton으로 재사용하고 있는데, jpasskit은 Object Mapper를 변조시키고 있다.public final class PKFileBasedSigningUtil extends PKAbstractSIgningUtil { private static final String FILE_SEPARATOR_UNIX = "/"; private static final String MANIFEST_JSON_FILE_NAME = "manifest.json"; private static final String PASS_JSON_FILE_NAME = "pass.json"; private ObjectWriter objectWriter; @Inject public PKFileBasedSigningUtil(ObjectMapper objectMapper) { this.addBCProvider(); this.objectWriter = this.configureObjectMapper(objectMapper); } ...protected ObjectWriter configureObjectMapper(ObjectMapper jsonObjectMapper) { jsonObjectMapper.configure(SerializationFeature.WRITE_DATES_AS_TIMESTAMPS, false); jsonObjectMapper.setDateFormat(new ISO8601DateFormat()); SimpleFilterProvider filters = new SimpleFilterProvider(); filters.addFilter("validateFilter", SimpleBeanPropertyFilter.serializeAllExcept(new String[]{"valid", "validationErrors"})); filters.addFilter("pkPassFilter", SimpleBeanPropertyFilter.serializeAllExcept(new String[]{"valid", "validationErrors", "foregroundColorAsObject", "backgroundColorAsObject", "labelColorAsObject", "passThatWasSet"})); filters.addFilter("barcodeFilter", SimpleBeanPropertyFilter.serializeAllExcept(new String[]{"valid", "validationErrors", "messageEncodingAsString"})); filters.addFilter("charsetFilter", SimpleBeanPropertyFilter.filterOutAllExcept(new String[]{"name"})); jsonObjectMapper.setSerializationInclusion(Include.NON_NULL); jsonObjectMapper.addMixIn(Object.class, PKAbstractSIgningUtil.ValidateFilterMixIn.class); jsonObjectMapper.addMixIn(PKPass.class, PKAbstractSIgningUtil.PkPassFilterMixIn.class); jsonObjectMapper.addMixIn(PKBarcode.class, PKAbstractSIgningUtil.BarcodeFilterMixIn.class); jsonObjectMapper.addMixIn(Charset.class, PKAbstractSIgningUtil.CharsetFilterMixIn.class); return jsonObjectMapper.writer(filters); }확실해졌다. 위에서 상황마다 오류가 간헐적으로 발생하는 이유는 이와 같은 것이었다. jpasskit이 실행되기 전까지는 정상적으로 동작한다. 그러다가 jpasskit을 한 번 거치면 이미 등록되어 있는 object mapper bean의 설정이 바뀌게 된다. 즉, 우리가 설정한 custom configuration들이 무시되어버려서, 전혀 엉뚱한 곳에서 에러를 일으킨다.jpasskit에서 사용하는 object mapper는 특별한 설정이 필요한 것은 아니라, bean을 사용하지 않고 기본 object mapper를 생성해서 넘기는 식으로 수정하였다.private static final ObjectMapper OBJECT_MAPPER = new ObjectMapper(); ... private byte[] createPKPassBinaries(PKPass pass, PKSigningInformation pkSigningInformation, InputStream thumbnail, InputStream thumbnail2x) throws Exception { return new PKFileBasedSigningUtil(OBJECT_MAPPER).createSignedAndZippedPkPassArchive(pass, createPKPassTemplate(thumbnail, thumbnail2x), pkSigningInformation); }All Clear.해당 내용은 jpasskit에 issue reporting하여 신규 release(0.0.9)가 예정중이다.#데일리 #데일리호텔 #기술스택 #스택도입 #후기 #일지 #JPasskit
조회수 2265

JIRA하고 자빠졌네!?

Overview“JIRA하고, 자빠졌네!” 세종대왕은 확실히 개발자의 두뇌를 가지고 있었던 게 분명합니다. 먼 시대를 지나 오늘날 QA를 하는 저에게 응원을 해주시니 말입니다. 하지만 그는 틀렸습니다. 걱정과는 다르게 다행히 자빠지진 않았거든요. 지라(JIRA) 덕분입니다.갑자기 지라 이야기가 나와 당황하셨죠? 축하해주세요. 드디어 브랜디도 지라를 사용하게 되었답니다. (짝짝짝!) 지라 도입은 처음이라 세팅부터 쉽지 않았는데요. 이번 글은 눈물겨웠던 지라 세팅 과정과 브랜디의 이슈관리를 소개하겠습니다. 스크럼을 쓰면 좋은 점스크럼(Scrum)은 요구 사항 분석부터 하는 칸반(Kanban)보다 효율적입니다. 안드로이드와 iOS로도 나눠져 있고 업무를 짧게 반복하기 때문이죠. 스크럼에 적합한 워크플로우(Workflow)를 볼까요? 이것은 실제로 브랜디 R&D본부에서 사용하고 있기도 합니다. 스크럼에 적합한 워크플로우IN PROGRESS: 이슈나 개발 요건을 티켓으로 만들면 IN PROGRESS 상태가 됩니다. RESOLVED: 이슈나 개발 요건이 완료되면 RESOLVED 상태로 변경합니다.QA: QA가 필요한 개발 요건은 QA상태로 변경합니다.PASS: 이슈 또는 개발 요건이 수정되었거나 문제가 없다면 PASS 상태로 변경합니다.FAIL: 이슈 또는 개발 요건이 제대로 수정되지 않았거나 다른 이슈가 발생하면 FAIL 상태로 변경합니다.QA불필요: QA가 필요하지 않은 개발 요건은 QA불필요 상태로 변경합니다.DONE: 이슈를 해결했거나 개발을 완료하면 DONE 상태로 변경합니다CLOSE: 담당 팀장님이 이슈 확인 후 CLOSE 처리합니다. 예를 들어보겠습니다. 킥오프 서비스 회의를 하고, SB를 제작, 리뷰합니다. 이후에 디자인팀과 개발팀 일정을 공유하고 스크럼 마스터는 스프린트 주기를 책정하죠. 스프린트가 시작되면 개발자는 스토리 티켓을 작성하는데요. 개발이 끝나면 QA가 필요한 티켓은 테스트를 진행하고, QA가 종료되면 스프린트도 종료됩니다.Epic 티켓위의 이미지는 Epic 티켓입니다. Android, iOS, 이슈 등 모든 티켓은 Epic 안에서 관리합니다. 한 곳에서 한꺼번에 관리하기 때문에 히스토리 관리가 편하고, 진행 상황도 확인할 수 있습니다.티켓 생성개발팀의 티켓 생성입니다. 개발자는 SB를 보고 개발 티켓을 작성합니다. 개발 티켓 작성 후에 개발이 진행되며 QA 판단 여부를 체크해 QA 상태로 변경합니다. 변경된 티켓에 관한 QA가 진행되며 문제가 없으면 해당 티켓은 종료됩니다.이슈 생성다음은 이슈 생성입니다. 파악한 SB는 디자인 시안과 비교하며 개발이 된 Android, iOS 테스트 파일을 QA합니다. QA를 진행할 때 발생한 이슈는 지라 티켓으로 등록하여 이슈를 관리합니다. 모든 이슈 티켓 종료되면 해당 차수의 QA는 끝나고 마침내 상용에 배포합니다. 배포가 완료되면 필수 및 크리티컬 리그레이션 테스트가 진행됩니다. Conclusion실수는 항상 모든 것이 끝난 이후에 보이기 마련입니다. 수십 번 QA를 해도 보이지 않던 문제들이 상용에 올라간 이후부터 보이기 시작하죠. 스크럼은 이런 실수들을 가장 최소화할 수 있는 툴이 아닐까 생각합니다. 물론 아무리 좋은 툴을 써도 팀원들과 함께 뭉치는 것보다 중요한 것은 없겠죠. 다음 글은 자동화를 주제로 찾아뵙겠습니다. JIRA하고 자빠지지 않는 개발자가 됩시다!글김치영 대리 | R&D PM팀[email protected]브랜디, 오직 예쁜 옷만#브랜디 #개발자 #개발팀 #인사이트 #경험공유 #JIRA
조회수 17491

Nodejs 기반의 개발 환경 클린하게 재 구성하기

다양한 언어 기반으로 개발 환경을 구축하여 만들다보면, 소프트웨어 버전관리 해야할 일이 흔히 생기곤 한다. 특히, 종종 대격변이 있는 버전의 판올림으로인해 충돌이 나거나 심볼릭 링크가 유실되는 경우들이 간혹 있는데 이번에도 그런 케이스였다.최근 node.js 기반으로 다양한 프로젝트 (vue.js, react.js등)를 진행하다가 이것저것 환경을 만지고 고치다보니 결국 node.js 를 완전히 클린하게 삭제해야 할 일이 생겼다.아마 이 환경에 결정타를 먹인 것이 OSX 환경에서 El Capitan에서 작업하던 Node.js를 그대로 high sierra로 OSX를 판올림 하면서 퍼미션 권한의 문제가 생긴건지, 노드 패키지 관리나 npm이 정상적으로 동작하지 않으면서 개발환경을 재 설정 할 수 밖에 없게 되었는데, 그 과정에 기름을 부어버리듯 당시에 brew로 설치한 노드가 brew로 삭제가 되지 않는 문제가 발생해버렸다.결국 환경을 처음부터 재 설치 해야하는 과정을 겪어야했는데 기존에 설치된 다양한 패키지 모듈의 찌꺼기들이 남아서 한방에 클린 설치를 할 수 있는 방법이 없을까 싶어 구글링을 해본 결과 앞서서 수많은 시행착오를 겪은 선배님들의 아주 좋은 작업 방식이 있어서 아래에 방법을 공유해본다.요세미티에서 nodejs 정리하는 법 [1]Uninstall nodejs from OSX Yosemite# 첫번째:lsbom -f -l -s -pf /var/db/receipts/org.nodejs.pkg.bom | while read f; do  sudo rm /usr/local/${f}; donesudo rm -rf /usr/local/lib/node /usr/local/lib/node_modules /var/db/receipts/org.nodejs.*# 완전히 nodejs + npm 을 날려버리는 방법 :# /usr/local/lib 경로로 가서 node 와 관련된 노드 모듈을 전부 삭제cd /usr/local/libsudo rm -rf node*# /usr/local/include 경로로 가서 node 와 관련된 노드 모듈 전부 삭제cd /usr/local/includesudo rm -rf node*# 만약 brew 로 인스톨을 했다면 아래와 같은 방법으로 삭제도 가능함. (저는 아래는 brew자체가 망가졌었는지 판올림으로 인한 권한 문제인지 brew로는 삭제 불가능했음.)brew uninstall node# home 디렉토리나 local, lib, include등의 폴더와 관련된 모든 파일은 아래의 경로에 있으니 찾아 들어가서 삭제cd /usr/local/binsudo rm -rf /usr/local/bin/npmsudo rm -rf /usr/local/bin/nodels -las# 아마 혹시 모르니까 클린하게 아래의 명령어도 한번 돌려주자sudo rm -rf /usr/local/share/man/man1/node.1sudo rm -rf /usr/local/lib/dtrace/node.dsudo rm -rf ~/.npmhomebrew를 사용하는 유저들 중에 npm이 제대로 동작하지 않으면 아래와 같은 방법으로도 처방이 가능하다. [2]rm -rf /usr/local/lib/node_modulesbrew uninstall nodebrew install node --without-npmecho prefix=~/.npm-packages >> ~/.npmrccurl -L https://www.npmjs.com/install.sh | sh클린하게 설치를 끝나고 react-native를 컴파일하는 과정에서 깃에 관련된 오류가 발생한다면 아래의 방법을 사용해보자. [3]오류메세지 :xcrun: error: invalid active developer path (/Library/Developer/CommandLineTools), missing xcrun at: /Library/Developer/CommandLineTools/usr/bin/xcrun솔루션 :xcode-select --install엘케피탄에서 하이시에라로 osx를 업데이트 하면서 homebrew의 링크가 깨졌다면 아래의 방법으로 다시 붙여준다. [4]sudo chown -R "$USER":admin /usr/localsudo chown -R "$USER":admin /Library/Caches/Homebrewbrew link libpng참고 출처 :[1] : https://gist.github.com/TonyMtz/d75101d9bdf764c890ef[2] : https://stackoverflow.com/questions/32893412/command-line-tools-not-working-os-x-el-capitan-macos-sierra-macos-high-sierra[3] : https://stackoverflow.com/questions/39778607/error-running-react-native-app-from-terminal-ios[4] : https://github.com/mikepurvis/ros-install-osx/issues/28 #더팀스 #THETEAMS #풀스택개발자 #Node.js #백엔드 #인사이트 #꿀팁

기업문화 엿볼 때, 더팀스

로그인

/