스토리 홈

인터뷰

피드

뉴스

조회수 1715

Amazon SageMaker는 처음이지?

Overview브랜디 랩스를 사랑해주시는 여러분, 안녕하세요. 개발자 오-연주입니다. 지난 4월, Brandi Back-end 개발자 분들과 코엑스에서 열렸던 AWS Summit(04.18 - 04.19)에 다녀왔습니다!여러 세션을 듣는 와중에 우연히 AI machine learning 를 쉽게 도와주는 Cloud Machine learning Flatform인 Amazon SageMaker에 대해 들었습니다. 듣던 중 머닝러닝에서 학습을 시켜 그 데이터로 ‘Brandi 서비스와 연관지으면 어떨까’ 라는 생각을 했는데요. 그래서 오늘은 많은 분들의 관심사인 머신러닝 학습관련 Amazon Amazon SageMaker에 대한 글을 쓰려고 합니다.sage는 마법사, 현자라는 의미입니다.sageMaker를 create하자!“자, 퐈이팅 넘치게 신나게 sagemaker를 create해볼까요!” 했는데…Seoul Region이 없다!현재 지원되는 리전은 아직 네 군데입니다. 저는 제일 있어 보이는 미국 동부의 버지니아를 선택하겠습니다.1] EU (Iceland) 2] US West (Oregon) 3] USEast (N. Virginia) 4] US East (Ohio)SageMaker를 create하기 전에는 학습할 데이터와 학습 모델을 저장할 S3 Bucket이 필요합니다.1. Default 값으로 S3를 만드세요.중요한 점은, bucket 이름이 “sagemaker-” 로 시작되어야 한다는 것입니다. 그래야 나중에 notebook instance가 어느 곳에 데이터를 저장할지 알 수 있습니다.Next, Create bucket 버튼을 누르다 보니, S3 Bucket이 생성되었습니다.2. Create notebook instance 버튼을 눌러 SageMaker를 만들어 봅시다!원하는 이름을 지어줍니다. 저는 machineLearningTest 라고 지었어요. IAM role 선택하는 부분에서 None을 눌러 Default 값으로 sageMaker를 만듭니다.인고의 Pending 시간3. Pending이 끝나고 “open” action을 선택하면 Jupyter가 열립니다.Jupyter(Jupyter Notebook)는 오픈 소스로 라이브 코드, 등식, 코드에 대한 시각화를 위해 사용됩니다. 또한 description을 위한 텍스트 문서(마크다운 등)를 지원하는 웹 어플리케이션입니다. 이렇게 하면 코드에 대한 문서화가 가능합니다. 이 글에서는 Jupyter Notebook을 통해 데이터를 학습하고, 그 데이터를 테스트하겠습니다. 제가 진행한 전체 코드 스크립트(entire script)는 이 글의 마지막 부분에 기술있으니 참고해 주세요.자, 이제 드디어 머신러닝 학습을 시킬 차례입니다. 머신러닝 학습에 꼭 필요한 키워드 두 가지를 뽑아봤는데요. - Dataset: 정제된 데이터와 그 데이터에 대한 label을 정리해 놓은 데이터 모음      - Machine learning Algorithm: 기계학습 알고리즘 우리는 MNIST 데이터셋을 k-means 알고리즘으로 학습시킬 겁니다.1)MNIST Dataset기계학습 알고리즘을 사용할 때 가장 기본적으로 테스트하는 데이터셋으로 MNIST 데이터셋이 있습니다. 이것은 사람이 0부터 9까지 숫자 중 하나를 손글씨로 쓴 이미지 데이터와, 해당 이미지에 대한 레이블(0 - 9)이 6만 개 들어있는 학습 데이터셋입니다. 각 이미지는 가로와 세로가 각각 28 픽셀로서, 각 픽셀은 0부터 255 사이의 숫자가 있습니다. 다시 말해, 하나의 이미지는 28 x 28 = 784개의 숫자로 이루어진 데이터입니다. 하나의 이미지를 나타내는 데이터의 array > length가 784라고 표현할 수 있겠네요.MNIST dataset2)k-means지금 만든 SageMaker 학습 알고리즘은 AWS 튜토리얼에서 제시한 K-means를 사용할 예정입니다. k-means는 label 없이, 즉 정답을 모르는 상태로 학습을 하는 비지도 학습 (unsupervised learning) 알고리즘 중 가장 쉽고 많이 쓰입니다. 정답을 모르니, ‘비슷한 애들끼리 뭉쳐봐’ 라고 하고, 알고리즘은 비슷한 친구들끼리 뭉쳐 놓습니다. k-means에서 k는 ‘k개 덩어리로 뭉쳐주세요’라고 제시하는 숫자입니다. 우리는 0부터 9까지 비슷한 친구들끼리 모이게 하고 싶으니 k=10을 쓸 겁니다.지금부터 해야 할 TO DO!1. MNIST 데이터셋을 다운로드받고, 우리가 학습시키기 좋도록 정제하기(preprocessing)2. Amazon SageMaker를 통하여 데이터 학습시키기(training job)3. Amazon SageMaker를 통하여 학습된 데이터를 배포하기(Deploy the model)4. 배포된 모델에 요청을 보내 테스트 데이터에 대한 예측값을 받아오기(inference)4. Jupyter 노트북 인스턴스 생성하기Jupyter에 New Notebook(conda_python3)을 선택해 새로운 노트북을 생성합니다.5. 학습시키기 위한 기본 셋팅드디어 코딩 시작입니다! (의욕활활) 초기 설정해두었던 IAM role, S3 Bucket, MNIST 다운로드, 다운받은 데이터 등을 확인하세요. 글보다 코드로 주석을 보는 게 가독성이 더 좋습니다. 아래 노트북을 통해 마크다운, 주석처리를 통해 description을 해두었으니 참고 바랍니다.외부에서 MNIST 다운로드가 쉽도록 한 url로 MNIST를 다운받는데 성공했습니다. MNIST 데이터셋 내용물 중 하나를 jupyter notebook에 그려서 제대로 다운 받았는지 show_digit() 함수를 작성해 확인하겠습니다.서른 번째 데이터는 누군가 3을 손글씨로 쓴 이미지입니다.6. 머신러닝 학습하기이 세션에서는 기계학습 알고리즘 설정, 학습할 데이터 경로를 지정하겠습니다. 그 후 MNIST 학습 데이터를 S3 버킷에 옮겨 저장합니다.kmeans.fit() 함수를 호출해 직접 학습을 시켜볼까요? 학습 과정은 상당히 오래 걸린다고 했는데 다행히 4분 만에 학습이 끝났습니다.여기서 잠깐! 여기서 k = 10에 대해서 조금 더 알아보도록 할게요. cluster란 한 지점에 점을 찍고 데이터 분석을 한 뒤, 비슷한 데이터들의 군집을 만들어 주는 것입니다. k-means가 진행되면서 각 cluster의 중심이 서로가 잘 뭉치는 방향으로 이동합니다. 직접 그려봤어요(부끄).7. 학습된 모델을 배포하기학습을 시키면 테스트를 하거나 사용할 수 있어야겠죠? 학습된 모델을 배포해 주세요.8. 배포된 모델 테스트 진행하기배포된 모델에 valid_set 데이터로 검증 데이터를 진행합니다..predict() 함수를 호출하면 새로운 이미지가 어떤 cluster에 속했는지 예측 결과를 알려줍니다. 가장 가까운 cluster가 0번이라고 예측 결과를 반환했네요. 또한 cluster 중심과의 거리는 5.85라고 알려줍니다. 여기서 중요한 점은 cluster 번호와 실제 숫자는 일치하지 않는다는 겁니다. 알고리즘은 임의로 cluster 중심에 번호를 매기는데, 꼭 0번 클러스터가 숫자 ’0’을 뭉쳐놓은 건 아니에요!9. 데이터 예측해보기더 많은 데이터를 예측해볼까요? valid set에 있는 100개 데이터를 예측해봅시다! 각 cluster에 가까운 데이터들이 쭉 선정되었습니다. 정확하지는 않지만 비슷한 숫자 모양들이 서로 군집되어 나타납니다. 0과 2같은 숫자들은 잘 표현되지만, 알고리즘이 9랑 4를 헷갈리거나 5와 3을 헷갈리는 듯 하네요.FASHION MNIST로 SageMaker 머신러닝 학습 및 예측해보기자, 이제 몸도 풀었으니 제가 하고 싶었던 패션 관련 머신러닝 학습 및 예측을 진행해볼게요. 마침 옷 그림으로 MNIST와 매우 비슷한 데이터를 만들어 놓은 fashion-MNIST라는 데이터셋을 발견했어요!1. 패션 관련 MNIST 다운로드 받기패션 MNIST 데이터셋을 우선 다운받아 볼게요! 다운로드는 여기에서 받을 수 있습니다. 총 네 개의 파일을 다운로드 받으세요.- train-images-idx3-ubyte.gz : train set 이미지  - train-labels-idx1-ubyte.gz : train set 레이블  - t10k-images-idx3-ubyte.gz : test set 이미지  - t10k-labels-idx1-ubyte.gz : test set 레이블  다운로드 받은 패션 Mnist의 label은 아래와 같이 되어 있습니다. 숫자 0부터 9 대신에 각 이미지가 어떤 이미지인지 텍스트로 표현되어 있어요.LabelDescription0T-shirt/top1Trouser2Pullover3Dress4Coat5Sandal6Shirt7Sneaker8Bag9Ankle boot2. Fashion-MNIST 데이터셋을 이전에 사용했던 mnist.pkl.gz 와 같은 형태로 변환해주는 스크립트 작성해주기위에서 연습할 때는 mnist.pkl.gz 한 개 파일만 사용했는데요!?! 그래서 다운로드 받은 네 개의 파일을 똑같은 형식의 파일 하나로 만들어주는 파이썬 스크립트를 작성해 fashion-mnist.pkl.gz 파일로 만들었어요.import gzip import pickle import numpy as np # MNIST 데이터셋은 train, test 셋이 각각 image, label로 나누어 저장되어있는 4개의 파일로 구성 test_image_path = 't10k-images-idx3-ubyte.gz' test_label_path = 't10k-labels-idx1-ubyte.gz' train_label_path = 'train-labels-idx1-ubyte.gz' train_image_path = 'train-images-idx3-ubyte.gz' out_file_name = 'fashion-mnist.pkl.gz' # train label / images 추출 with gzip.open(train_label_path, 'rb') as train_label_f:     train_label = np.frombuffer(             train_label_f.read(), dtype=np.uint8, offset=8).astype(np.int64)   with gzip.open(train_image_path, 'rb') as train_image_f:     train_imgs = np.frombuffer(             train_image_f.read(), dtype=np.uint8, offset=16).reshape(-1, 784).astype(np.float32)   # test label / images 추출 with gzip.open(test_label_path, 'rb') as test_label_f:     test_label = np.frombuffer(test_label_f.read(), dtype=np.uint8, offset=8).astype(np.int64)   with gzip.open(test_image_path, 'rb') as test_image_f:     test_imgs = np.frombuffer(             test_image_f.read(), dtype=np.uint8, offset=16).reshape(-1, 784).astype(np.float32)   # 기존 60000개 training set에서 50000개는 train set으로 사용하고, 10000개는 valid set으로 활용 train_label, valid_label = train_label[:50000], train_label[50000:]  train_imgs, valid_imgs = train_imgs[:50000], train_imgs[50000:]   # train set, validati on set, test set을 튜플 자료형으로 저장 out_data = ((train_imgs, train_label),             (valid_imgs, valid_label),             (test_imgs, test_label))   # pickle file로 dataset 데이터 포맷 맞춰주기 with gzip.open(out_file_name, 'wb') as out_f:     pickle.dump(out_data, out_f) 이 과정을 통해 나온 결과물, fashion-mnist.pkl.gz 를 Jupyter Notebook이 있는 경로에 업로드합니다.fashion-mnist.pkl.gz가 업로드 되었습니다!3. 머신러닝 학습하기아까 사용했던 활용했던 숫자 MNIST 스크립트를 그대로 사용하겠습니다. show_digit()을 이름만 바꾼 show_fashion()으로 데이터를 살펴보니 드레스가 보입니다.조금 전에 했던 숫자 MNIST와 똑같은 과정을 SageMaker를 이용해, 학습 → 테스트 → 예측해보니 아래와 같은 예측 결과를 얻을 수 있었습니다. 신발은 신발끼리, 바지는 바지끼리, 가방은 가방끼리 분류된 게 너무나 신기합니다. (아까 진행한 숫자보다 더 학습이 잘 된 것 같은건 기분 탓일까요…?)머신러닝이라고 겁내지 않아도 됩니다! 유저들에게 더 좋은 서비스 제공할 수 있으니까요. 지금까지 브랜디 개발2팀의 단아한 개발자 오연ㅈ….참사를 막아주세요.앗, 잠시만요!! 중요한 것을 놓칠 뻔 했네요.저처럼 테스트를 하면 그냥 지나치지 마세요. 자동 결제로 출금되는 뼈 아픈 경험을 할 수도 있습니다. 반드시 이용했던 서비스들을 stop 하거나 terminate 해주세요. (Clean-up단계) 자세한 내용은 여기를 클릭하세요.지금까지 Brandi 개발 2팀, 단아한 개발자 오연주였습니다!# entire script (숫자 Mnist) # 오호 드디어 coding start! # 이제부터 Brandi의 단아한 개발자, 저를 따라오시면 됩니다 :) # 노트북 Block을 실행하는 방법은 Shift + Enter 입니다 from sagemaker import get_execution_role role = get_execution_role()  # 초기에 설정해 뒀던 IAM role 가져오기 bucket = 'sagemaker-julie-test' # 초기 단계에 만들었던 S3 Bucket 이름 적기 %%time import pickle, gzip, numpy, urllib.request, json   # 여기서 잠깐, 생소한 라이브러리 설명을 드릴게요! # pickle: python식 데이터 압축 포맷 # numpy: 수치 계산을 하기 위한 python package # Load the dataset urllib.request.urlretrieve("http://deeplearning.net/data/mnist/mnist.pkl.gz", "mnist.pkl.gz") with gzip.open('mnist.pkl.gz', 'rb') as f:     train_set, valid_set, test_set = pickle.load(f, encoding="latin1")     # matplotlib로 그리는 그림이 jupyter 노트북에 바로 보여줄 수 있도록 설정 %matplotlib inline import matplotlib.pyplot as plt # 도표나 그림을 그릴 수 있게 해주는 라이브러리 plt.rcParams["figure.figsize"] = (2, 10) # 그림의 크기 지정 def show_digit(img, caption='', subplot=None):     if subplot is None:         _,(subplot) = plt.subplots(1,1)         imgr = img.reshape((28, 28))     subplot.axis('off')     subplot.imshow(imgr, cmap='gray')     plt.title(caption)   # train_set의 그림과[0] 데이터 이름[1]을 예시로 보여준다 show_digit(train_set[0][30], 'This is a {}'.format(train_set[1][30]))   # 학습을 하기 위해 학습 알고리즘 및 데이터 경로 설정! from sagemaker import KMeans data_location = 's3://{}/kmeans_highlevel_example/data'.format(bucket) output_location = 's3://{}/kmeans_example/output'.format(bucket)   print('training data will be uploaded to: {}'.format(data_location)) print('training artifacts will be uploaded to: {}'.format(output_location))   kmeans = KMeans(role=role,                 train_instance_count=2,  # 장비 2대를 사용하여 학습하겠어요!                 train_instance_type='ml.c4.8xlarge',                 output_path=output_location,                 k=10,  # 아래 그림을 참고해 주세요!                 data_location=data_location) %%time   # 학습 시작! kmeans.fit(kmeans.record_set(train_set[0]))   %%time # 모델을 만든 후 사용하기 위하여 배포하기 kmeans_predictor = kmeans.deploy(initial_instance_count=1,                                 instance_type='ml.m4.xlarge')                                  # valid_set에 30번째 sample을 테스트 해보기 result = kmeans_predictor.predict(valid_set[0][30:31])  print(result)   %%time   # vaild_set에 있는 0번부터 99번까지의 데이터로 cluster를 예측 해보자 result = kmeans_predictor.predict(valid_set[0][0:100])   # 예측 결과에 대한 cluster 정보를 수집 clusters = [r.label['closest_cluster'].float32_tensor.values[0] for r in result]   # 각 cluster별 예측된 이미지 출력 for cluster in range(10):     print('\n\n\nCluster {}:'.format(int(cluster)))     digits = [ img for l, img in zip(clusters, valid_set[0]) if int(l) == cluster ]     height = ((len(digits)-1)//5)+1     width = 5     plt.rcParams["figure.figsize"] = (width,height)     _, subplots = plt.subplots(height, width)     subplots = numpy.ndarray.flatten(subplots)     for subplot, image in zip(subplots, digits):         show_digit(image, subplot=subplot)     for subplot in subplots[len(digits):]:         subplot.axis('off')     plt.show() 출처Getting Started - Amazon SageMaker CodeOnWeb - 머신러닝 초보를 위한 MNIST fashion-mnist 글오연주 사원 | R&D 개발2팀[email protected]브랜디, 오직 예쁜 옷만#브랜디 #개발문화 #개발팀 #업무환경 #인사이트 #경험공유
조회수 1210

AWS CodeCommit. 배포 자동화 환경 만들기(브랜치별 Pipeline 구성)

편집자 주: 함께 보면 좋아요!애플리케이션 개발부터 배포까지, AWS CodeStarCodeStar + Lambda + SAM으로 테스트 환경 구축하기AWS Lambda + API Gateway로 API 만들어보자목차1. CodeStar 프로젝트 생성2. 템플릿 선택3. 프로젝트 정보 입력4. 프로젝트 생성 및 자동 배포 확인5. CodeCommit 접속6. staging 브랜치 생성7. index.py 수정 및 Commit8. 람다 실행 권한 변경9. 스택 생성 및 템플릿 소스 복사10. 템플릿 소스 붙여넣기 및 S3 버킷 URL 생성11. staging 브랜치용 CloudFormation 스택 생성(1)12. staging 브랜치용 CloudFormation 스택 생성(2)13. 파이프라인 설정14. AWS CodeCommit 연결15. CodeBuild16. CodeDeploy17. staging 브랜치용 파이프라인 생성 및 자동 릴리즈18. 작업 그룹 추가19. 파이프라인 실행 및 배포20. API Gateway 접속 및 엔드포인트 확인21. index.py 배포 확인OverviewAWS는 유용한 서비스를 많이 제공하지만, 이것들을 조합하고 사용하는 건 꽤나 번거롭습니다. CodeStar는 이런 고충을 해결해주고자 등장한 서비스입니다. 버전 관리(CodeCommit)부터 빌드(CodeBuild)와 배포(CodeDeploy), 모니터링(CloudWatch)까지 한 번에 프로젝트를 구성해줍니다. 여기서 한 발 더 나아가 브랜치(master, staging)마다 자동으로 빌드, 배포되도록 구성했습니다. 이 포스팅에서는 AWS CodeCommit과 AWS Lambda(Python)을 사용했습니다. 물론 다른 스택을 사용해도 괜찮습니다.Practice1.CodeStar 프로젝트를 생성하겠습니다. CodeStar로 접속해 프로젝트를 생성합니다. CodeStar를 처음 사용한다면 서비스 역할을 생성하라는 창부터 나옵니다. 역할을 생성하고 진행합니다.2.왼쪽 필터에서 웹 서비스, Python, AWS Lambda를 클릭하고 프로젝트 템플릿을 선택합니다.3.프로젝트 정보를 입력하고 AWS CodeCommit을 선택, 프로젝트를 생성합니다. 코드편집 도구설정은 건너뜁니다. 나중에 다시 설정할 수 있습니다.4.조금 기다리면 프로젝트가 생성됩니다. 오른쪽 아래의 엔드포인트로 접속하면 자동으로 생성되는 예제 프로젝트가 잘 배포된 것을 볼 수 있습니다. 클릭 몇 번으로 자동 빌드, 배포에 모니터링까지 가능한 프로젝트가 구성되었으니 이제 staging 브랜치를 생성하여 똑같이 구성하겠습니다.5.먼저 브랜치를 생성하겠습니다. CodeCommit에 접속해 왼쪽의 브랜치 메뉴를 클릭하면 아래와 같이 master 브랜치가 생성된 것을 볼 수 있습니다.6.브랜치 생성을 클릭해 브랜치 이름은 staging, 다음으로부터의 브랜치는 master를 선택합니다.7.생성된 staging 브랜치를 클릭하면 파일 리스트가 보입니다. master 브랜치와 결과 페이지를 구별하기 위해 index.py 파일을 임의로 수정하겠습니다. index.py > 편집을 클릭해 output 문자열을 수정하고 Commit합니다.8.CodeStar는 CloudFormation 서비스로 인프라 리소스를 관리합니다. CloudFormation은 ‘스택’이라는 개념을 사용해 설정을 구성하고 있습니다. 지금은 master 브랜치의 template.yml 파일을 사용해 master 브랜치용 스택이 생성되어 있는 상태입니다.문제는 여기에 기본적으로 람다(lambda) 실행 역할이 구성되어 있는데, 이 역할의 리소스 접근 권한은 master 브랜치 람다로 한정되어 있다는 것입니다.1)이 글에서는 staging용 람다 실행 권한을 별도로 생성하는 방법으로 문제를 해결했습니다. staging 브랜치의 template.yml 파일을 열어 Resources: LambdaExecutionRole: Properties: RoleName을 임의의 값으로 수정합니다. 저는 뒤에 ‘-staging’을 붙였습니다.9.CloudFormation 스택도 따로 생성합니다. AWS CloudFormation에 접속하면 기본적으로 생성된 스택을 볼 수 있습니다. 기존의 스택 템플릿에서 조금만 수정해 스택을 생성하면 되니 템플릿을 복사해오겠습니다.awscodestar-testproject-lambda를 클릭해 오른쪽의 ‘Designer에서 템플릿 보기/편집’을 클릭하면 템플릿 소스를 볼 수 있습니다. 가장 아래의 템플릿 탭이 클릭되어 있는지 확인하고 그대로 복사합니다.10.다시 CloudFormation으로 돌아와 템플릿 디자인 버튼을 클릭하고 복사한 소스를 붙여 넣습니다. 여기서 마찬가지로 Resources: LambdaExecutionRole: Properties: RoleName을 조금 전의 이름과 같게 수정하고 저장합니다. 템플릿 언어를 YAML로 바꾸고 수정하면 보기 편합니다.Amazon S3 버킷에 저장하면 템플릿 파일이 S3 버킷에 저장되며 S3 버킷 URL이 생성됩니다. 잘 복사해둡니다. 템플릿 디자이너는 이제 닫아도 됩니다11.CloudFormation 창에서 스택 생성을 클릭해 Amazon S3 템플릿 URL에 복사한 URL을 입력합니다. 이후의 내용은 스택 이름만 다르게 하고, 나머지는 기본적으로 생성된 스택 정보와 동일하게 입력합니다. 기존에 생성한 스택 정보는 스택 상세 페이지 오른쪽의 스택 업데이트를 클릭하면 볼 수 있습니다.생성 페이지 마지막의 ‘AWS CloudFormation에서 사용자 지정 이름을 갖는 IAM 리소스를 생성할 수 있음을 승인합니다’를 체크하고 생성을 클릭합니다.12.staging 브랜치용 CloudFormation 스택이 생성되었습니다. 이 스택을 사용해 staging 브랜치용 파이프라인을 생성하겠습니다.13.CodePipeline으로 접속해 파이프라인 생성을 클릭하면 설정창으로 이동하는데, 아래 이미지와 같이 입력합니다.CodeStar프로젝트가 생성되며 IAM 역할과 S3 버킷이 자동 생성되는데, 동일한 역할과 버킷으로 설정하면 됩니다. 파이프라인 이름만 임의로 다르게 넣어줍니다.14.AWS CodeCommit을 연결해야 합니다. 아래와 같이 자동 생성된 리포지토리를 선택하고 미리 생성한 staging 브랜치를 연결합니다.15.CodeBuild를 알아보겠습니다. 기본 파이프라인에서 자동 생성된 프로젝트를 선택하고 다음을 클릭합니다.16.새 창을 열어 기존에 생성된 파이프라인 상세 페이지로 접속합니다. 편집을 클릭하고 Deploy 스테이지 편집을 클릭, GenerateChangeSet 편집 버튼을 클릭하면 설정값이 보입니다. 이 값을 참고해 다음 스텝을 아래와 같이 진행하면 됩니다.앞서 생성했던 staging 브랜치 파이프라인용 스택을 연결하고, 세트 이름을 임의로 다르게 넣습니다. ‘템플릿’과 ‘템플릿 구성 - 선택 사항’ 설정값도 다르니 주의합니다.17.다음으로 진행하면 staging 브랜치용 파이프라인이 생성되어 자동으로 릴리즈되고 있는 것을 볼 수 있습니다.18.여기서 master 파이프라인과 동일하게 Deploy 스테이지의 GenerateChangeSet 아래에 작업 그룹을 하나 추가해야 합니다. 마찬가지로 master 파이프라인을 참고해 작성힙니다. 작업이름, 새로 생성한 스택, staging용으로 임의 작성했던 세트 이름을 넣습니다.19.저장 후, 변경사항 릴리스를 클릭하면 파이프라인이 실행됩니다. 잠시 기다리면 완료와 함께 배포작업까지 이뤄집니다.20.모든 작업이 끝났습니다! 제대로 구성되었는지 엔드포인트로 접속해 확인해보겠습니다. AWS API Gateway로 접속해 staging 브랜치용 API Gateway를 클릭합니다.21.왼쪽의 스테이지 메뉴를 클릭하면 엔드포인트 URL을 볼 수 있습니다. 이 URL로 접속하면 위에서 편집한 staging 브랜치의 index.py가 배포된 것을 볼 수 있습니다. master 브랜치의 엔드포인트로도 접속해서 비교해보세요.ConclusionAWS의 서비스들은 강력하고 다양합니다. 그 수가 많아져 이제는 전부 다루기는커녕 나열하기도 어려울 정도입니다. 아마존에서도 이런 고충을 알기 때문에 여러 서비스를 묶어 간편하게 세팅하는 CodeStar를 제공하는 게 아닌가 싶습니다. 수가 많은 만큼 각각의 서비스를 정확히 이해하고 적절히 이용해 오버엔지니어링을 피하는 게 중요하겠습니다.참고1) IAM - 역할 - Permission boundary에서 확인 가능합니다글양정훈 사원 | R&D 개발3팀[email protected]브랜디, 오직 예쁜 옷만
조회수 1379

반복적인 모니터링 프로세스 구축

IT 서비스에 장애가 발생 할 경우 모니터링 프로세스는 장애를 찾는 것으로 끝나지 않습니다. 장애를 발견하는 것은 모니터링 프로세스의 시작 점이며 최종적으로 모니터링을 통해 장애의 근본 원인을 찾아낼 수 있어야 합니다. 그리고 찾아낸 원인들은 예측과 추론에서 확인까지 이르는 하나의 프로세스로 정착되어 다시금 모니터링 과정에 포함되어져야 합니다. 이렇게 서비스를 운영하는 과정에서 근본적인 장애를 찾기 위해 모니터링을 어떻게 이해해야 하는지 알아보겠습니다. 우리가 모니터링 해야 하는 지표어플리케이션 지표(WORK METRICS)- 처리량 지표(THROUGHPUT)- 성공 지표(SUCCESS)- 에러 지표(ERROR)- 성능 지표(PERFORMANCE)시스템 지표(RESOURCE METRICS)- 가동률(UTILIZATION)- 포화상태(SATURATION)- 에러 지표(ERROR)- 이용률(AVAILABILITY)이벤트(EVENTS)- 코드 변경(CODE CHANGES)- 경고 알림(ALERTS)- 규모 변경(SCALING EVENT)- 기타(ETC)IT 서비스를 운영하는 과정에서 발생하는 문제의 근본원인을 추적하기 위한 모니터링 데이터는 크게 3가지로 나눌 수 있습니다. 어플리케이션 지표(Work metrics)서비스의 흐름(트렌젝션)을 측정하여 시스템의 최상위 레벨의 이슈를 보여줍니다. 시스템 지표(Resource metrics)이용률, 상태, 에러 또는 시스템 의존적인 리소스의 이용률을 수량화합니다.이벤트(Events)코드변경, 내부 경고, 확장 이벤트와 같이 드물게 발생하는 불연속적이 이슈를 보여줍니다.일반적으로 IT 모니터링의 핵심 이슈는 어플리케이션 지표를 통해 확인할 수 있습니다. 하지만 다른 지표들 또한 어플리케이션의 지표에서 나타난 문제의 원인을 찾기 위한 중요한 요소이기 때문에 같이 모니터링 해야 합니다. 시스템 지표를 통한 모니터링인프라스트럭쳐는 대부분 시스템의 자원으로 구성됩니다. 최상위 수준에서 유용한 작업을 하는 각각의 시스템들은 다른 시스템들과 연동하기도 하는데요. 예를 들어, 여러분의 아파치 서버가 MySQL 데이터베이스를 자원으로 사용하여 요청을 처리하는 작업을 지원할 수 있습니다. 연관된 작업을 따라 들어가보면 MySQL은 제한된 커넥션 풀을 관리하기 위한 리소스를 가지고 있고 MySQL이 실행되는 서버의 물리적인 리소스 레벨에서는 CPU, Memory, Disk 같은 지표를 보게 됩니다.어플리케이션이 서비스를 제공하는 데 있어서 각각의 리소스가 그 작업을 지원한다면 우리는 장애가 발생한 경우에, 필요한 원인을 얻는 좋은 방법을 시스템을 통해서도 찾아볼수 있습니다. 이런 프로세스를 만들어 간다면 시스템에서 발생한 경고를 통해 장애의 원인을 체계적인 조사하는데 도움이 될 것입니다. 1. 최상위 어플리케이션 지표에서 시작하기첫번째 해야 하는 질문은 "발생한 장애를 설명할 수 있는가?" 이다. 처음부터 문제를 명확하게 정의하지 못하면 이슈를 분석하기 위해 파고들어가야 하는 시스템 패스를 잃어버릴 확률이 높다.다음으로 문제가 있을 것으로 보여지는 최상위 시스템의 작업 지표를 검사해라. 이 지표들은 종종 문제의 원인을 알아내거나 또는 적어도 추적해야 하는 방향을 알려 줄 것이다. 예를 들어 성공적으로 진행된 작업의 성공율이 한계치 이하로 떨어졌다면 에러 지표를 찾아보고 반환된 에러의 형러의 타입을 살펴봄으로써 문제의 방향을 찾아나갈 것이다. 반면에, 대기시간이 길고 외부 시스템에 의해서 요청된 작업처리량이 매우 높다면 시스템 과부하로 인한 문제일 확률이 높다. 다만 와탭의 어플리케이션 분석 서비스를 사용한다면 약간 방법을 달리해도 된다. 와탭의 성능 분포도(어플리케이션 히트맵)와탭의 어플리케이션 성능 분포도를 통해 문제가 발생한 트랜잭션을 드래그하여 선택하게 되면 실제 어플리케이션에서 발생하는 스탭들을 추적하여 문제 해결에 바로 도달할 수도 있다. 하지만 더 복잡한 형태의 장애라면 시스템의 리소스 정보를 찾아봐야 합니다.  2. 리소스 찾아보기최상위 work metrics를 조사하여 문제의 원인을 알수 없다면, 다음으로 시스템이 사용하는 리소스(물리적인 요소 뿐만 아니라 시스템의 리소스 역할을 하는 소프트웨어 또는 외부 서비스)들을 조사합니다. 해당 리소스가 높다면 리소스를 사용하는 하위 Application 지표를 찾아보는 방식으로 찾아나갑니다. 와탭의 데시보드(CPU, MEMORY)3. 변경 내용 찾아보기다음으로 지표에 연관된 경고와 다른 이벤트들을 살펴봅니다. 문제가 발생하기 직전 코드가 릴리즈 되었거나, 내부 경고가 발생하고나 다른 이벤트가 등록되었다면 문제와 연관된 부분을 찾아봐야 합니다. 4. 수정하기 (잊지 말기)문제의 원인을 찾았다면 문제의 원인이 되는 상태를 수정해보고 증상이 사라지는 것을 확인합니다. 증상이 더이상 나오지 않는다면 향후 유사한 문제를 피하기 위해 시스템을 어떻게 변경할지 고민해야 합니다.  서비스가 중단된 상황이 오면 1분이 중요합니다. 문제를 찾는 속도를 높이기 위해 눈앞에서 벌어진 상황에 대한 높은 집중력을 유지하면서 대쉬보드를 상황에 맞춰 재 조정합니다. 최상위 어플리케이션 데쉬보드와 각각의 서브시스템들을 위한 대시보드를 하나씩 설정합니다. 시스템 대시보드는 시스템 지표의 하위 시스템의 키 메트릭스와 함께 어플리케이션 메트릭을 확인 할 수 있어야 합니다. 이벤트 데이터도 이용가능한 상황이라면 연관 분석 차트에서 관련된 이벤트가 올라가 있어야 합니다. 와탭의 알림 서비스정리하기   서비스에 장애는 무조건 발생하지만 우리는 모니터링을 통해 빠르게 해결 할 수 있습니다. 이를 위해 표준화된 모니터링 프로세스를 만들고 대시보드로 연관관계를 만들어 놓는다면 문제를 빠르게 추적 조사할 수 있습니다. 가능하면 모든 지표는 어플리케이션 지표에서 부터 찾을 수 있도록 대시보드를 구성합니다.인프라스트럭처를 통해서도 문제를 분석할 수 있습니다. 시스템에 대해 대시보드를 설정하고 주요 지표들을 올려놓아야 합니다. 문제의 원인을 조사하는 것은 증세가 나타나는 최상위 시스템에서 부터 시작합니다. 문제가 되는 리소스가 발견되면 문제를 발견하고 수정할 때가지 리소스에서 발견되는 패턴을 조사하고 적용시키는작업을 반복해야 합니다. #와탭랩스 #개발자 #개발팀 #인사이트 #경험공유 #일지
조회수 1817

한국에서 SaaS 서비스 하기

와탭랩스 는 국내에서 보기드문 B2B SaaS 서비스 기업입니다. 그러다 보니 많은 도움도 받을 수 있었고 좋은 기업들도 많이 만날 수 있었습니다. 하지만 모든 것이 처음이다 보니 많은 실수들과 함께 커온 것도 사실입니다. 아래는 SaaS 기업들에게 꼭 필요한 내용들만 추렸습니다. 건너뛰거나 아직 진행 안한 내용들은 지금이라도 꼭 해보세요.  좋은 고객을 골라내세요. 와탭랩스는 서버 모니터링 서비스를 먼저 시작했습니다. 우리는 스타트업이 자사의 제품을 안정적으로 서비스하기 위해 우리의 제품을 사용할 거라 생각했습니다. 하지만 와탭에게 스타트업들은 생각처럼 좋은 고객은 아니였습니다. 그래서 우리는 서버 모니터링의 주요 고객층을 SMB 중에서 100대정도의 서버를 가진 기업으로 변경해야 했습니다. 우리는 초기에 좋은 제품을 만드는 일에 집중하고 좋은 고객을 찾는 과정을 허술히 생각했습니다만 그것은 큰 오판이였습니다. 우리는 우리가 만든 서비스를 사랑하는 사람들을 찾아 내는 데 최선을 다해야 합니다. 우리가 만든 제품의 가치를 지속적으로 발견해내는 고객들이 누군지 찾아 내야 합니다. 그러기 위해 계속 고객을 정의해 나가야 합니다."고객이 우리의 제품을 사는 것은 고객이 우리가 하는 일을 알아서가 아니라 우리가 고객이 하는 일이 무엇인지 알기 때문입니다." 계속, 끊임없이 고객을 분류하세요. 와탭의 서버 모니터링은 서비스에 가입하고 자사의 서비스에 에이젼트를 설치 한 후에 간단한 무료 모니터링을 시작으로 유료 기능까지 넘어가게 되어 있습니다. 반대로 와탭의 어플리케이션 모니터링은 가입 후 트라이얼 사용 후 유료 사용자로 넘어가게 구조화 되어 있습니다. 단계별 활성화 사용자와 비 활성화 사용자를 구별할 수 있어야 합니다. 단계별로 고객을 분류 할 수 없다면 분류할 수 있는 장치들을 마련해야 합니다.고객을 팬으로 만드세요. TV를 보면 많은 걸그룹과 남성그룹들이 나옵니다. 그리고 열성적이 팬들이 있죠. 그리고 팬들은 자신들만의 공간을 만들어 갑니다. 와탭도 그런 과정을 만들기 위해 노력하고 있습니다. 좋은 컨텐츠를 만들고 세미나를 열고 다양한 IT 행사를 지원합니다. 아직은 많이 어설프지만 와탭의 고객분들이 저희의 팬이 될 수 있도록 노력하고 있습니다. 와탭 사용자 분들은 앞으로 더 기대하셔도 좋습니다.  현재 줄 수 있는 가치로 고객을 유치하세요.항상 세일즈에게 당부드리는 이야기 입니다. 미래에 나올 기능으로 고객을 대하지 마라. 미래에 나올 A라는 기능을 대상으로 고객과 이야기 하면 고객은 A가 나올 때까지 기다립니다. SI 기술 영업인 경우에는 SI를 통해 제공 될 미래의 기능을 파는 것이지만 서비스를 파는 와탭랩스는 현재의 제공되는 서비스로 영업을 해야 합니다. 그렇기 때문에 현재 우리가 가지고 있는 제품이 고객에게 어떤 도움이 되는지 정확하게 이해하고 설명할 수 있어야 합니다. 이것은 와탭이 온라인 상에서 제공하는 마케팅에도 그대로 적용됩니다. 허황된 약속은 Churn Rate만 높일 뿐입니다. 우리가 고객에게 줄수 있는 가치를 정확히 전달해야 합니다. 이메일을 다양하게 사용하세요.와탭은 서비스를 오픈하고 처음에는 메일 서버를 만들어서 가입 인증 메일만 보냈습니다. 사용자가 쌓인 후에는 메일챔프를 사용해서 뉴스레터를 보내기 시작했죠. 이메일을 통해 튜토리얼을 보내거나, 교육 컨텐츠를 보내는 것도 좋은 방법입니다.Transactional Email을 사용하세요. 와탭도 이제 Transactional email을 추가하려고 준비 중에 있습니다. Transactional email은 가입 축하 / 유료 권유 / 패스워드 변경 등 가입 또는 사용 기간 및 상황에 맞쳐 자동으로 보내는 이메일 입니다. 대표적인 서비스로는 맨드릴 이 있습니다. Transactional Email을 사용해서 가입 축하 메일, 에이젼트 설치 튜토리얼 메일, 탈퇴 후 다시 돌아와 달라는 메일 등 다양한 메일을 보낼 수 있습니다.소셜 미디어를 사용하세요.제가 지금 사용하고 있는 브런치도 좋은 소셜 미디어 입니다. 제가 이 글 하나에 얼마나 많은 와탭링크를 남겼을까요? :) 유튜브 채널을 활용하는 것도 좋습니다. 페이스북은 이제 거의 필수죠. 회사마다 블로그도 운영하고 있을 것입니다. 슬라이드쉐어에 회사 관련한 많은 내용들을 올리는 것도 좋으며 큐오라도 적절하게 사용한다면 좋을 것입니다. 생태계를 배척하지 마세요. 와탭랩스는 클라우드협회의 회원사입니다. 클라우드 협외의 많은 분들이 다양한 경험을 바탕으로 국내 클라우드 사업과 SaaS 사업의 발전을 위해 노력하고 있습니다. 혹시 해외 사례와 비교하다보니 지엽적인 한계가 명확히 보일지도 모릅니다. 그럼 같이 들어와서 바꿔가면 됩니다. 와탭랩스가 서비스하는 IT 모니터링은 MSP(Managed Service Provider)와 영업을 전문으로 하는 리셀러사들이 복잡하게 얼켜있는 생태계를 구성하고 있습니다. 와탭은 좋은 솔루션을 제공하는 기업으로써 해당 생태계의 좋은 구성원이 되는 노력을 수년간 진행하고 있습니다. 자신의 생태계를 만들어 가세요. 최근 저희는 제2회 와탭 세미나를 개최했습니다. 이제 막 시작했지만 100명이나 모인 세미나였습니다. 규모를 키우다 보면 컨텐츠도 쌓일 것입니다. 와탭은 백엔드 서비스 기업들을 모인 백엔드클럽도 만들었습니다. 열심히 회원사로 활동도 해야겠지요. (아, 최근 열심히 못했습니다. 죄송합니다. ) 와탭은 성능 분석 전문가들이 모일 수 있는 플랫폼도 만들 계획입니다. 이처럼 직첩 다양한 생태계를 만들어 가는 것도 중요합니다. SaaS 세계에서는 이 모든 것들이 마케팅입니다. 회원 탈퇴를 숨기지 마세요.미국 엘리베이터에 닫음 버튼은 동작하지 않습니다. 장애인의 불편을 해소하고자 닫음 버튼을 막았지만 여전히 닫음 버튼이 엘리베이터에 있는 이유는 심리적 안정감(내가 엘리베이터의 문을 닫을 수 있다는)을 제공하기 위해서 입니다. 그런데 많은 서비스들이 회원 탈퇴를 숨기고 있거나 또는 애써 외면하고 있습니다. 숨긴다는 것보다는 신경을 안씀으로써 자연스레 숨겨지는 결과를 만들어 내는 것에 가까운것 같습니다. 이 또한 가입자에게는 심리적 압박감으로 다가올 수 있습니다. 그리고 사용하지 않는 사용자들만 사이트에 쌓이게 만드는 효과를 내기도 합니다. 차라리 탈퇴를 공개하고 탈퇴 시 이유를 묻는 과정을 넣는 것이 유리합니다. 탈퇴를 하는 이유를 조사하세요.정말 중요한 질문입니다. 왜 탈퇴를 하시는 건가요? 해당 질문은 탈퇴의 마지막 구간에서 집행하는 것이 좋습니다. 와탭랩스는 아직 해당 프로세스를 타고 있지 못합니다. 하지만 결국은 우리도 만들 예정인 프로세스입니다. 아쉽게도 한국은 서베이를 참 안해주는 국가로 알고 있긴 합니다. :)고객과 관계를 맺으세요.와탭은 무료 서비스와 트라이얼 서비스를 제공합니다. 물론 유료화가 최종 목표입니다. 그렇기 때문에 매일 아침 무료 고객과 트라이얼 고객의 서비스 이슈를 분석합니다. 알럿이 너무 많이 나온 고객에게 전화해서 이슈를 확인하고 도움을 드린다거나 설치에 곤란을 겪는 고객에게 전화를 드리고 시연을 진행하는 일들이 있습니다. 물료 유료 고객에게도 마찬가지입니다. 유료 고객에게는 성능 리포트를 무료로 제공해 드리기도 합니다. 신용카드를 통한 자동이체 프로세스를 만드세요. 대부부의 가맹점들이 공식적으로 지원하지 않는 것이 신용카드를 통한 자동이체 프로세스입니다. 특히 한국에서는 어떤 빌링사에서도 공식적으로 지원하고 있지 않습니다. 하지만 SaaS 서비스 기업이라면 꼭 진행하셔야 합니다. 혹 당장 안해준다면 고객을 조금만 모은다음에 다시 연결해 보세요. #와탭랩스 #와탭 #SaaS #인사이트 #운영 #SaaS서비스 #SaaS기업
조회수 2121

디너의여왕 탐구 생활_인터뷰2. 개발팀

안녕하세요 :)오늘은 "디너의여왕 탐구생활"개발팀 편을 들고 왔습니다.개발팀 열일 현장입니다.무슨 뜻인지 모를 단어들이컴퓨터에 가득가득하네요!이제 그들과 인터뷰를 진행하면서본격적으로 파헤쳐 보도록 하겠습니다!!!오늘 인터뷰는 개발팀의 3인가디님, 월리님, 펭돌이님과인터뷰를 진행해보겠습니다 :-)첫번째 인터뷰는개발팀 가디님과 진행하겠습니다.Q. 현재 담당하고 계신직무에 대해 소개 부탁드려요. A. 저는 디너의여왕에서데이터 수집과Elasticsearch와 관련된검색시스템을 담당하고 있습니다.  Q. 어떤 동기를 갖고해당 직무에 지원하게 되었나요? A. 개인 프로젝트로기본적인 검색엔진 시스템을구축해 본 적이 있었는데,해당 경험을 살릴 수 있는소중한 기회라 생각해서해당 직무에 지원하게 되었습니다.Q. 해당 직무에 필요한 역량이 있다면무엇일까요?  A. 검색 시스템의전체적인 흐름을 아는 것이아무래도 업무를 수행하는데 도움이 됩니다.그리고 관련된 자료가 한국어로는 흔하지 않기 때문에필요한 자료들을 잘 찾을 수 있는스킬이 필요할 것 같습니다.Q. 해당 직무에서 일할 때 사용하는자신만의 스킬, 노하우가 있다면 무엇인가요? A. 직무와 관련된 자료는아무래도 영문이 많은데다행히 제가 익숙한 일본어로도양질의 자료가 있어서자료를 얻는데 도움이 되고 있습니다.Q. 해당 직무에서 일하면서 즐거웠던 적,힘들었던 적이 있다면 언제일까요?  검색과 관련된 기능은 Elasticsearch에서많은 것을 처리해 주기는 하지만여전히 개발자가 직접 처리해 주어야 하는작업들이 있습니다.다소 지루하게 느껴질 수 있는 부분이지만시행착오를 겪으면서조금씩 개선이 되는 시스템을 보면서보람을 느낄 수 있었습니다.두 번째 인터뷰는개발팀 월리님과 진행하겠습니다.Q. 현재 담당하고 계신 직무에 대해소개 부탁드려요.  디너의여왕 웹 프론트엔드 개발을맡고있습니다.Q. 어떤 동기를 갖고해당 직무에 지원하게 되었나요?디자인을 직접 코딩해서나오는 표현이 재밌어서 시작했는데마침 타이밍 맞게 여기에 기회가 생겨서요.Q. 해당 직무에 필요한 역량이 있다면 무엇일까요?  기본적인 html/ css/ javascript에 대한기본적인 이해가 일단 필요하고요,프론트엔드 분야가 일반적으로가장 노출이 많이 되는 부분이다 보니일반적으로 개발만 하는 것보다는UX/UI에 대한 고민하는 자세가가장 중요한 것 같습니다.  Q. 해당 직무에서 일할 때 사용하는 자신만의 스킬, 노하우가 있다면 무엇인가요?  저도 부족한데 뭐…코딩은 왕도가 없습니다.일단 많이 뜯어고쳐보고또 삽질도 많이 해봐야 한다고 생각합니다.  그러다 보면 자연스럽게 익혀져서나만의 노하우가 생긴다고 보면 됩니다!Q. 해당 직무에서 일하면서 즐거웠던 적,힘들었던 적이 있다면 언제일까요?  프론트엔드 개발자로서내가 만든 코드가실제 서비스에 나온다는 것 자체가보람찬 일입니다.힘든 건 묻지 마세요Q. 마지막으로, 디너의여왕이 될지원자들에게 한 마디 부탁드려요. 어솨요 반가버요 ヽ(‘ ∇‘ )ノ세 번째 인터뷰입니다.개발팀 펭돌이님과 함께 진행하겠습니다!Q. 현재 담당하고 계신직무에 대해 소개 부탁드려요.  A. 안녕하세요.저는 디너의여왕에서 사용되는웹 서비스 백엔드를 개발하고 있어요.  Q. 어떤 동기를 갖고 해당 직무에지원하게 되었나요?  A. 실시간 트래픽이 높은 웹 서비스를개발해보고 싶은 욕심이 있었어요.트래픽이 높으면 신경 써야 할 것들이여러 가지가 있는데그것 또한 경험이 되리라고 생각했습니다.  또, 과거에잠시 블로그를 운영했던 적이 있었는데그 덕분에,  SNS 블로그 마케팅이라는세일즈 프로모션에도 관심이 많았어요.Q. 해당 직무에 필요한 역량이 있다면무엇일까요?  A. 한 가지 이상의 서버에서 사용되는프로그래밍 언어를 다룰 줄 알아야 합니다. 또 데이터를 수집하고,가공하는 등의 기술에 대해서도응용력이 좋아야 합니다.  그 외에도 다양한 요구 사항들이동시다발적으로 발생할 수가 있으니우선순위에 따라업무를 순서대로 처리할 수 있는 능력이중요한 것 같아요.Q. 해당 직무에서 일할 때 사용하는자신만의 스킬, 노하우가 있다면무엇인가요?  A. 저는 최대한 오픈 소스,검색을 활용하는 편이에요.  오픈 소스 같은 경우에는여러 포럼, 저장소 등에서 검색해보는 것이중요하고,검색 같은 경우에는적절한 키워드 (영어 의문문 how to ~)를이용하여 검색하면웬만한 지식들은 구글에 나와 있습니다.Q. 해당 직무에서 일하면서 즐거웠던 적,힘들었던 적이 있다면 언제일까요?  A. 갑작스럽고 치명적인 오류 등에 의해서갑자기 바빠지거나,예상치 못한 오류 때문에업무에 지장이 생기는 경우가가장 스트레스를 많이 받았던 것 같아요.최대한 그런 일들이 발생하지 않도록예방해요.집을 짓는다고 가정하면초석부터 탄탄히 짓는 것이죠.즐거운 일은아무래도 예상외로 술술 풀려나갈 때가장 보람찬 것 같아요.Q. 개발 업무의 매력은 어떤 것이 있을까요? A. 개발 업무는인터넷이라는 가상의 공간에서무언가를 창조하고,사람들에게 보여주는 매력이 있는 것 같아요.  또, 만들어진 결과물로 인해서누군가의 인생을좌우할 수 있을 것만 같아요.이런 게 매력이 아닐까요? Q. 마지막으로,디너의여왕이 될 지원자들에게한 마디 부탁드려요. A. 디너의 여왕은단순한 음식점 소개 웹 사이트가 아닌,푸드 플랫폼을 위한다양한 기술들이 집약되어 있습니다.단순히 포스트를 올리고,보여주는 것이 아닌어떻게 하면 효율적인 마케팅 효과를 불러올 수 있는 것인지 수집하고 가공하는복잡한 기술들이 집약되어 있습니다.  빅데이터 등의 IT 패러다임에관심이 있으시다면서로 win-win할 수 있는 기회가 될 것 같아요.이상으로 인터뷰를 마치겠습니다 :-)디너의여왕 탐구생활 다음 편은누구와 함께 하게 될까요?#디너의여왕 #개발팀 #팀원소개 #팀원인터뷰 #기업문화 #조직문화
조회수 1698

네이버 신디케이션 — Rails

블로그에 새 글이 올라올 때, naver에 사이트 등록을 한다. 네이버 신디케이션 API를 이용하면 자동으로 등록된다.Wordpress에는 네이버 신디케이션 plugin이 존재한다. Rails gem을 찾아보니 애석하게도 없었다. 직접 만들면서 알게 되었다. 딱히 gem을 만들 만한 일도 아니더라.네이버 신디케이션을 이용하려면 우선 네이버 웹마스터 도구를 이용해야 한다. 해당 url이 자기 것이라는 인증과정만 거치면 바로 사용할 수 있다.작동방법은 대강 이렇다.네이버 신디케이션 API를 이용해서, 새로운 글이 생성되었음을 알린다. (혹은 글이 지워졌음을)네이버 크롤링 봇, Yeti가 와서 크롤링 해간다.API를 이용할 때 미리 약속된 format으로 만들어야 되는데, ATOM feed와 구조가 거의 같다. 다만 네이버가 정한 룰 때문에 (꼭 이름/저자/업데이트날짜 이런 순서를 지켜야 한다.)Rails에서 제공하는 atom_feed helper를 그대로 이용할 수 없다. 그러나 format만 살짝 바꾸면 되기 때문에 atom_feed helper를 이용해서, feed를 만드는 방법을 알려주는 Railscast가 늘 그렇듯 엄청 도움이 된다.(요즘 새로운 episode가 안올라오고 있는데… 힘내시라는 의미에서 예전에 유료결제 해드렸다)atom_feed helper의 코드를 그대로 가져와서 formating만 바꾼 naver_atom_feed helper를 만들었다. 별다른 건 없고, feed option 초기화 부분과 제일 마지막에 나와야 되는 link 부분을 주석처리한게 전부다.module NaverSyndicationHelper def naver_atom_feed(options = {}, █) ... feed_opts = {} //feed_opts = {"xml:lang" => options[:language] || "en-US", "xmlns" => 'http://www.w3.org/2005/Atom'} ... xml.feed(feed_opts) do xml.id... // xml.link... // xml.link... yield ActionView::Helpers::AtomFeedHelper::AtomFeedBuilder.new(xml, self, options) end end end새로만든 naver_atom_feed helper를 이용해서, feed부분만 완성한 code이다.naver_atom_feed({xmlns: "http://webmastertool.naver.com", id: 'http://ikeaapart.com'}) do |feed| feed.title "이케아아파트" feed.author do |autor| autor.name("이케아아파트") end feed.updated Link.maximum(:updated_at) feed.link(:rel => 'site', :href => (request.protocol + request.host_with_port), :title => '이케아아파트')이제 entry쪽을 만들어야 되는데, 네이버가 지정한 순서에 맞아야지만 신디케이션 서버에 전달할 수 있다. 정말 이상한 형식이다. 아무튼 그래서 Rails에서 제공하는 entry method를 사용하지 못한다. 이번엔 AtomFeedBuilder class에 naver_entry method를 만들었다.#config/initializers/feed_entry_extentions.rbmodule ActionView module Helpers module AtomFeedHelper class AtomFeedBuilder def naver_entry(record, options = {}) @xml.entry do @xml.id... # if options[:published]... # @xml.published(...) # end # if options[:updated]... # @xml.updated(...) # end # @xml.link(..) ...이번에도 순서 때문에 주석처리 한 것 밖에 없다. naver_entry method를 이용해서 완성된 코드가 아래 코드이다.# views/links/show.atom.buildernaver_atom_feed({xmlns: "http://webmastertool.naver.com", id: 'http://ikeaapart.com'}) do |feed| feed.title "이케아아파트" feed.author do |autor| autor.name("이케아아파트") end feed.updated Link.maximum(:updated_at) feed.link(:rel => 'site', ...) feed.naver_entry(@link, {id: link_url(@link)}) do |entry| entry.title(@link.title) entry.author do |author| author.name("이케아아파트") end entry.updated(@link.updated_at.xmlschema) entry.published(@link.created_at.xmlschema) entry.link(:rel => 'via', :href => (request.protocol + request.host_with_port)) entry.content(@link.contents) end end이제 새 글이 만들어 질 때, 이 atom 파일 주소를 네이버 신디케이션 API로 보내주면 된다. 참고로 Rails에서는 어떤 view파일을 사용할지 알아서 해주니, controller에 따로 ‘response_to’ 를 이용해서 format을 나눠줄 필요는 없고, 이름만 잘 맞춰주면 된다. (위 파일명은 show.atom.builder 이다)네이버 신디케이션 API에 핑을 보내는 code이다. 네이버가 지정해 놓은 header를 설정해 줘야 되고, 신디케이션 인증 토큰을 받아서 header에 넣어줘야 된다. 신디케이션 토큰은 네이버 웹마스터 페이지에서 볼 수 있다.require 'net/http' ... header = {"User-Agent"=>"request", "Host"=>"apis.naver.com", "Progma"=>"no-cache", "Content-type"=>"application/x-www-form-urlencoded", "Accept"=>"*/*", "Authorization"=>"Bearer " + ENV["NAVER_SYNDICATION_TOKEN"]} uri = URI.parse('https://apis.naver.com/crawl/nsyndi/v2') http = Net::HTTP.new(uri.host, uri.port) http.use_ssl = true args = {ping_url: link_url(link_id, format: "atom")} uri.query = URI.encode_www_form(args)request = Net::HTTP::Post.new(uri.request_uri, header) http.request(request)네이버 신디케이션 페이지에서 핑이 제대로 도달하는지 바로 확인해 볼 수 있다.#티엘엑스 #TLX #BA #BusinessAnalyst #비즈니스애널리스트 #꿀팁 #인사이트 #조언
조회수 2746

Radix? Redis!

얼마전부터 antirez twitter에서 radix tree 관련 트윗이 올라왔습니다. 얼마 지나지 않아 antirez가 radix tree를 구현한 rax 프로젝트를 공개하고 redis의 cluster hash_slot의 저장구조를 radix tree로 수정 되는것을 보았습니다.그동안 antirez의 코드 읽으면서 배우는 게 많았고, 자료구조에 관심이 많아서 살펴보기 시작했습니다. radix tree를 왜 구현 했는지, 어떻게 구현쟀는지 알아보고 radix tree를 redis에 어떻게 적용하였는지도 알아보겠습니다.antirez는 redis의 hash-slot -> key 구조에서 중복으로 인한 메모리 사용을 줄이기 위해 radix tree 를 만들었다고 합니다. 이 포스트에선 rax를 적용시킨 redis cluster로 이야기를 진행 하겠습니다.“현재는 hash-slot -> key에만 사용되지만 추후에는 다양한 곳에 사용 예정”이라는 트윗redis cluster?redis에는 cluster 기능이 있습니다.6대 이상의 redis 노드를 cluster 구성하면(최소 leader 3대, follower 3대 구성해야 cluster 가능) 16384개의 hash_slot이 노드 갯수에 맞게 분배가 됩니다. 즉 3대의 leader로 cluster 구성하면 각각의 leader는 0 ~ 5460, 5461 ~ 10922, 10923 ~ 16383 hash_slot을 나눠 가집니다.cluster 구성 후 client가 데이터 저장/삭제/조회 명령어를 redis server에 전송할 때 마다 key의 hash값을 구하고 어떤 leader hash_slot에 포함되는지 찾습니다.# example 127.0.0.1:7000> set hello world # hash_slot = crc16("hello") & 0x3FFF 계산된 값이 현재 접속한 leader의 hash_slot 범위에 있다면 그대로 실행 되지만 다른 leader의 hash_slot 이라면 에러를 발생하고 다른 leader로 이동하라고 힌트를 줍니다.cluster 구성 후에 노드를 추가 하거나 제거 할 경우 각 leader의 hash_slot을 재분배 하고, hash_slot에 맞게 key도 재분배 되어야 합니다. 단순하게 생각하면 leader의 hash_slot 재분배한 후 모든 key를 재계산하고 hash_slot에 맞는 leader에 할당 하는 겁니다.[현재까지 저장된 keys].forEach(v => { hash_slot = crc16(v) & 0x3FFF // leader에 할당된 hash_slot에 맞게 분배 }) 하지만 antirez는 redis Sorted set 데이터 타입의 구현체인 skiplist 을 이용하여 문제를 풀었습니다. skiplist는 member와 score를 저장하고, score를 기준으로 정렬합니다. skiplist의 member에는 key를 저장하고 score에는 key의 hash_slot을 저장합니다.(변수명 slots_to_keys)slots_to_keys 정보는 cluster 구성된 모든 노드가 저장합니다. 이후 재분배가 필요해지면 16384개 hash_slot을 leader 갯수에 맞게 재분배 하고 slots_to_keys에 저장된 “key:hash_slot” 정보를 가지고 해당 hash_slot의 key를 조회 및 재분배 합니다. 즉 slots_to_keys에 이용하여 재분배시 발생하는 계산을 없앤것입니다.잘 했구만 뭐가 문제냐?redis에 key가 추가/삭제 될때마다 slots_to_keys에 데이터가 저장되고 지워집니다. redis에 저장되는 key 갯수가 증가 할수록 slots_to_keys의 크기도 커짐을 의미 합니다.(※ 메모리 사용량)또한 leader 갯수에 맞게 16384개 hash_slot을 leader에 재분배하고, 각 hash_slot에 맞는 key를 찾고 할당 합니다. 예를들어 slots_to_keys에서 score 0인(hash_slot 0을 의미) member를 조회해서 0번 hash_slot에 할당, score 1인 member를 조회해서 1번 hash_slot에 할당 하는 방식으로 0 ~ 16383 hash_slot을 진행합니다.앞에서 말한 hash_slot에 속한 key를 조회 하는 GETKEYSINSLOT 명령어가 있는데 여기에 이슈가 있습니다.cluster GETKEYSINSLOT slot count # slot: hash_slot 번호 # count: 특정 hash_slot에서 조회할 key 갯수 # example 127.0.0.1:7000> cluster GETKEYSINSLOT 0 3 # 0번 hash_slot의 key를 3개 조회한다. "47344|273766|70329104160040|key_39015" "47344|273766|70329104160040|key_89793" "47344|273766|70329104160040|key_92937" 사용자가 특정 hash_slot에 몇개의 key가 저장 되었는지 모르기때문에 count에 Integer.MAX 를 대입하는데, redis는 hash_slot에 실제로 저장된 key 갯수와는 상관없이 client가 전달한 count만큼의 메모리를 할당합니다.} else if (!strcasecmp(c->argv[1]->ptr,"getkeysinslot") && c->argc == 4) { /* cluster GETKEYSINSLOT */ long long maxkeys, slot; unsigned int numkeys, j; robj **keys; // ... 명령어의 4번째 인자를 maxkeys에 할당, 즉 사용자가 입력한 count if (getLongLongFromObjectOrReply(c,c->argv[3],&maxkeys,NULL) != C_OK) return; // ... keys = zmalloc(sizeof(robj*)*maxkeys); numkeys = getKeysInSlot(slot, keys, maxkeys); addReplyMultiBulkLen(c,numkeys); for (j = 0; j < numkeys>zmalloc maxkeyscluster GETKEYSINSLOT unnecessarily allocates memory그래서 메모리도 적게 차지하면서(압축 가능) key와 key의 hashslot을 효율적으로 저장 및 조회가 가능한 자료구조가 필요했고 antirez는 radix tree를 선택합니다.※ 뜬금 없는데 2012년, redis 자료형에 Trie를 추가한 P/R이 생각났습니다.radix tree 구현한 rax 알아보기시작하기전 radix tree (Wikipedia) 위키 페이지의 그림을 보고 감을 잡은 후에 아래를 보시면 잘 읽힙니다.자! 이제부터 rax의 주석과 코드를 보면서 어떻게 구현됐는지 알아보겠습니다.Noderax의 노드 구성은 다음과 같습니다.typedef struct raxNode { uint32_t iskey:1; /* Does this node contain a key? */ uint32_t isnull:1; /* Associated value is NULL (don't store it). */ uint32_t iscompr:1; /* Node is compressed. */ uint32_t size:29; /* Number of children, or compressed string len. */ unsigned char data[]; } raxNode; 노드의 정보를 담고있는 32 bit(iskey, isnull, iscompr, size)와 key/value 그리고 자식 노드의 포인터를 저장하는 unsigned char data[]가 있습니다. 특이한 점은 key/value를 동일한 노드에 저장 하지 않고 key가 저장된 노드의 자식 노드에 value를 저장합니다.※ 사진 출처위 그림을 예로 32 bit 정보가 어떤걸 의미하는지 알아보겠습니다.iskey는 노드가 key의 종착역(iskey:1)인지 중간역(iskey:0)인지 나타내는 flag입니다. 1, 3 노드는 iskey:0 이고 2, 4, 5, 6, 7 노드는 iskey:1이 됩니다.isnull은 value의 null 여부를 표시합니다. unsigned char data[]에 key/value 그리고 자식 노드의 포인터를 저장하므로 value를 찾으려면 계산이 들어갑니다. 불필요한 연산을 줄이기 위해 만든 필드 같습니다.Trie는 각 노드에 한글자씩 표현 하지만 Radix는 압축을 통해 한 노드에 여러 글자 표현이 가능합니다. 이를 나태내는 플래그 iscompr 입니다. 노드가 압축된 노드(iscompr:1)인지 아닌지(iscompr:0)를 나타냅니다.size는 iscompr 값에 따라 의미가 다릅니다. iscompr이 1이면 저장된 key의 길이를 의미하고 iscompr이 0이면 자식노드의 갯수(저장된 key의 갯수)를 의미합니다.위 4개 정보를 이용해서 한 노드의 크기를 구하는 코드는 아래와 같습니다.#define raxNodeCurrentLength(n) ( \ sizeof(raxNode)+(n)->size+ \ ((n)->iscompr ? sizeof(raxNode*) : sizeof(raxNode*)*(n)->size)+ \ (((n)->iskey && !(n)->isnull)*sizeof(void*)) \ ) ※ 노드에 value 주소를 저장하거나, 마지막 자식 노드 포인터를 알고 싶을때 사용합니다.FindraxLowWalk 함수를 이용해 key가 존재 하는지 판단합니다.size_t raxLowWalk(rax *rax, unsigned char *s, size_t len, raxNode **stopnode, raxNode ***plink, int *splitpos, raxStack *ts) rax에 “ANNIBALE” -> “SCO” -> [] 로 저장 되어있을때 어떤 값을 리턴하는지 알아보겠습니다.*s 가 “ANNIBALESCO”이고 len이 11 인 경우# splitpos: 0, return value: 11 "ANNIBALE" -> "SCO" -> [] ^ | *stopnode *s가 “ANNIBALETCO”이고 len이 11인 경우# splitpos: 0, return value: 9 "ANNIBALE" -> "SCO" -> [] ^ | *stopnode *s의 길이 len과 return value가 같다면 rax에 key가 존재하는 것입니다. *s의 길이 len과 return value가 다른 경우 어디까지 매칭됐는지 보여주는 return value와 어떤 노드에 어디까지 일치했는지 표현하는 *stopnode, splitpos를 통해 추가 정보를 얻을수 있습니다.InsertraxLowWalk 함수를 이용해서 저장할 위치를 찾습니다. (*stopnode, splitpos, return value)1번에서 구해진 데이터를 이용해서 새로운 노드 생성 및 링크를 연결합니다.rax에 “ANNIBALE” -> “SCO” -> [] 상태에서 “ANNIENTARE”를 저장하는 과정입니다.1. raxLowWalk 함수를 이용하여 저장할 위치 탐색 splitpos: 4, return value: 4 "ANNIBALE" -> "SCO" -> [] ^ | *stopnode 2. *stopnode, splitpos 데이터를 이용하여 노드 분리 "ANNI" -> "B" -> "ALE" -> [] 3. iscompr: 0인 노드 "B"를 기준으로 새로운 key 저장 ("B"와 "E"는 같은 노드) |B| -> "ALE" -> [] "ANNI" -> |-| |E| -> "NTARE" -> [] RemoveraxLowWalk 함수를 이용해서 저장할 위치를 찾습니다. (*stopnode, splitpos, return value)1번에서 구해진 데이터를 이용해서 노드 제거 및 compress가 가능다면2가지 경우가 있습니다.마지막 노드만 iskey: 1이고, 연속으로 iscompr:1인 노드가 된 경우마지막 노드만 iskey: 1이고, iscompr:1 -> iscomplr:0 -> iscomplr:1 노드 구조가 된 경우입니다.첫번째 경우를 알아 보겠습니다. rax에 “FOO” -> “BAR” -> [] 상태에서 “FOO”를 지우는 과정입니다.1. raxLowWalk 함수를 이용하여 저장할 위치 탐색 splitpos: 3, return value: 3 "FOO" -> "BAR" -> [] ^ | *stopnode 2. 해당 key 삭제, 여기서는 자식노드가 있으므로 노드 삭제는 하지 않고 노드의 iskey: 0으로 세팅 "FOO" -> "BAR" -> [] 3. compress가 가능한 경우 진행 "FOOBAR" -> [] 두번째 경우를 알아 보겠습니다.0. "FOOBAR"와 "FOOTER"가 저장된 상황입니다. FOOTER를 지우는 경우입니다. |B| -> "AR" -> [] "FOO" -> |-| |T| -> "ER" -> [] 1. raxLowWalk 함수를 이용하여 저장할 위치 탐색 splitpos: 0, return value: 6 |B| -> "AR" -> [] "FOO" -> |-| |T| -> "ER" -> [] ^ | *stopnode 2. 해당 key 삭제 "FOO" -> "B" -> "AR" -> [] 3. compress가 가능한 경우 진행 "FOOBAR" -> [] cluster 정보는 어떻게 저장되나?기존 skiplist 자료구조를 이용했던게 어떻게 변경 되었는지 알아보겠습니다.server.cluster->slots_keys_count[hashslot] += add ? 1 : -1; if (keylen+2 > 64) indexed = zmalloc(keylen+2); indexed[0] = (hashslot >> 8) & 0xff; indexed[1] = hashslot & 0xff; memcpy(indexed+2,key->ptr,keylen); if (add) { raxInsert(server.cluster->slots_to_keys,indexed,keylen+2,NULL,NULL); } else { raxRemove(server.cluster->slots_to_keys,indexed,keylen+2,NULL); } 먼저 slots_keys_count 변수를 이용하여 각 hash_slot의 key 갯수를 저장합니다.그리고 key는 hash_slot(2 byte) + key, value는 NULL로 rax에 저장하여 특정 hash_slot에 속한 key 조회를 쉽게 만들었습니다.마치며rax 구현과 rax가 어떻게 redis에 적용됐는지 보면서 오랜만에 재밌게 코드를 읽은것 같습니다. 개인적으로 데이터 관련 유용한 무언가를 만드는게 목표인데, 이런 좋은 코드들을 하나 둘씩 제것으로 만드는것도 과정이라 생각하며 진행했습니다.앞으로 rax가 redis에서 어떻게 쓰일지 흥미롭고, Redis를 Saas 형태로 제공하는 업체들이 언제 적용할지도 궁금합니다.긴 글 읽어주셔서 감사합니다.cluster, rax 관련 antirez twitterRedis cluster Insertion cluster Issuesame amount data hash table vs radix treehashset + ziplist -> radix tree + listpack 1/5replace Hashset with Radix treeraxNode에서 사용한 flexible memberflexible memberrax 를 이용한 Redis Streams(2017.12.17일 업데이트)Redis Stream#잔디 #토스랩 #JANDI #기술스택 #도입후기 #Redis #인사이트
조회수 872

[Tech Blog] Software architecture: The important stuff

마틴 파울러는 Software architecture 를 “무엇이건 간에 중요한 것들(The important stuff whatever it is)” 이라고 정의합니다. 조금은 재미있는 정의지만, 그 정의를 도출하기 위해 제시한 다른 정의를 들어보면 고개를 끄덕이게 합니다.  Software architecture 는 전문 개발자들이 같은 생각을 가지고 이해하는 시스템 디자인입니다. Software architecture 는 이른 시기에 정해져야 하는 디자인 결정들입니다. 혹은 여러분이 “아, 처음부터 좀 더 잘 생각하고 할 껄”이라고 후회하는 바로 그 결정들입니다. Software architecture 는 또한 바꾸기 어려운 결정들의 집합입니다.  결국 무엇을 중요하게 생각할 것인가, 그것이 Software Architecture 라는 의미입니다. Why is it important? 왜 중요한지 설득하지 못한다면 사실 중요하지 않은 것일지도 모르죠. 그래서 왜 Software Architecture 이 중요한지 짚어보고자 합니다. 쿠팡은 Microservice architecture 로 전환하는 여정을 글로 남겼는데요. 블로그 글의 제목을 “행복을 찾기 위한 우리의 여정” 이라고 지었습니다. (좋은 글이니 읽어보시길!) 다시 말해서, Software Architecture는 개발가자 더 좋은 제품을 만들 수 있는 길이기 때문에 중요하다고 말합니다. 그러나 좋은 Software Architecture를 만드는 일은 쉽지 않습니다. 블로그 글을 인용 해보겠습니다: “여기 저렴한 제품과 비싼 제품이 있습니다. 비싼 제품은 software architecture 가 잘 고려되어 있고, 저렴한 제품은 시스템 디자인에 대한 고민 없이 구현되어 있습니다. 하지만 두 제품은 겉으로 보기에 차이가 없습니다. 소비자가 보기에 똑같이 보이고, 똑같은 기능이 있으며, 성능 또한 같습니다. 어떤 제품을 사야할까요?” 소비자는 제품을 만든 개발자의 행복을 위해 더 비싼 제품을 선택하지는 않습니다. 개발자 역시 동료들에게 “내가 행복하려면 시간과 돈이 좀 더 들더라도 좋은 software architecture 를 구성해야 해.” 라고 주장하기엔 설득력이 부족하죠. Software architecture 가 왜 중요한지 모두가 공감하려면 경제적인 입장에서 그 중요성을 설득해야 합니다. “내부 품질을 좀 포기하더라도 이번 릴리즈에 더 많은 기능들이 들어가야 해.” 라는 의견에 “안돼 우리(개발자)는 더 전문적으로 구성해야 해.”라는 의견으로 대응하면 항상 질 수 밖에 없습니다. 장인 정신과 경제 논리 사이의 싸움에서는 경제 논리가 항상 이겨왔거든요.   Cumulative functionality over Time Software architecture 를 고려하지 않으면서 제품을 개발하면 초기에는 기능 추가 속도가 빠를 수 있지만, 시간이 흐름에 따라 제품의 기능 증가 속도는 점차 느려집니다. 이미 구현된 기능들과 코드가 새로운 기능을 추가하는데 걸림돌이 되기 때문입니다. 한편, 좋은 설계를 지속적으로 건강하게 유지하고, 주기적으로 리팩토링을 하고, 코드를 깨끗하게 유지한다면 시간이 흘러도 기능 추가가 느려지지 않을 수 있습니다. 오히려 기능을 추가하기 위해 수정해야 할 곳들이 명확하고 모듈화 또한 잘 되어있기 때문에 시간이 갈 수록 기능 추가가 더욱 빠르게 진행될 수 있습니다. 새로운 개발자가 참여하는 시점에도 시스템을 더욱 빠르게 이해하고, 더 빠르고 안전하게 기능을 추가할 수 있게 됩니다. 결국 장기적으로 더 많은 기능을 생산하고 빠르게 고객에게 전달하기 위해서 개발팀은 좋은 디자인과 설계에 대해 깊게 고민해야 합니다. What is the best software architecture? 옳은 software architecture 는 없습니다. 상황에 따라 해답은 다를 수 있습니다. Microservice architecture 가 좋다고 해서 모든 것에 대한 답이 microservice architecture 인 것은 아니고, 마찬가지로 어떤 시스템이 monolithic architecture 로 구현되어 있다고 해서 뒤쳐져 있는 것도 아닙니다. 모든 선택에는 Tradeoff 가 있기 마련이니까요. 유선 통신 시스템을 구성한다고 생각해 볼까요? 우리 나라처럼 인터넷이 잘 구성된 상황에서 Skype 로 할 수 있는 통화는 무료이고, 품질도 좋고, 영상 통화까지 됩니다. “Skype 만세! 인터넷을 통한 통신이 항상 옳습니다!” 라고 외치려던 시점에 정전이 되었습니다. 방금 외친 외침은 멀리 가봐야 옆집 정도 닿겠죠. 한편 기존 유선 전화 시스템은 느리고 화상 통화도 안되지만, 전화선 자체에 전원이 공급되고 있기 때문에 정전 시에도 통화가 가능합니다. 전쟁 상황이나 기타 재난 등에도 반드시 통신이 가능해야 하는 곳은 유선 전화 시스템이 꼭 필요할 것 같습니다. 은행 시스템도 적절한 예시가 될 수 있습니다. 비밀번호 입력, 전화 인증, OTP 확인하는 등 은행 업무는 왜이리도 복잡할까요? 그냥 비밀번호 기억해주고 로그인 유지해주면 참 편할텐데 말이죠. 안전하기 위해서겠죠. 여러분의 자산은 소중하니까요. 사용성(Usability)과 안전성(Security)은 종종 둘 사이를 조절해야 하는 Tradeoff 입니다. 만들려는 제품과 시스템, 환경, 시기와 조건 등에 따라서 적절한 architecture 는 달라집니다. 좋은 architecture 를 선택할때 개발자는 선택한 것의 대척점에 있는 무언가를 포기 해야합니다. 그렇기에 software architecture 는 기술적인 범주 안에서만 고려되면 안되고, 구현하고자 하는 비지니스를 매우 잘 이해하고 고려해서 적용해야 합니다. What are you going to do? 이미 구성된 software architecture 를 변경하는 것은 굉장히 어렵습니다. 이미 구성되어 있는 것들을 상세하게 알고 있어야 하고, 비지니스의 요구 사항을 수용해야 하며, 이미 존재하는 기능이 변경 도중 문제 없이 동작해야 합니다. 또한 기존 시스템에 기여한 개발자들과 변경 사항에 대한 공감대를 이뤄야 하며, 겉으로 보기에 당장 변화가 없는 것에 대한 비용에 대해 많은 사람들을 설득해야 합니다. 최근 Buzzvil 에서는 Architecture Task Force 팀을 구성하였습니다. 이를 통해 전체적인 설계를 정비하고 모든 개발팀이 구조적으로 같은 이해를 할 수 있도록 분석, 조사, 계획 수립, 실행에 옮길 예정입니다. 지속적인 공유를 통해 전사적인 공감대를 유지하고 체계적인 문서화와 가이드라인을 통해 모든 팀원이 함께 실행하며 성장할 수 있는 기반을 준비하게 될 것입니다. 궁극적으로 전사 프로젝트와 모든 팀이 더욱 빨리 움직일 수 있는 software architecture 를 구성하고, 이를 통해 더 많은 기능을 더 빠르게 전달할 수 있게 할 것입니다. 아직 해야할 일들이 많이 남아있지만 제대로 계획하고 빠르게 움직인다면 충분히 좋은 결과를 만들 수 있을 것 같습니다. 당장은 눈에 보이는 변화가 없을지라도, 좋은 디자인에 대한 고민과 실행이 우리가 궁극적으로 바라는 비전과 목표에 한 걸음 더 빠르게 다가가는 올바른 길이라고 믿습니다.   *버즈빌에서 개발자를 채용 중입니다. (전문연구요원 포함)작가소개 Whale, Chief Architect “Keep calm and dream on.”
조회수 435

iOS 개발자를 구합니다!

“세상 모든 광고영상을 누구나 쉽게 만들 수 있게 한다.”영상광고는 사업의 규모와 업종을 막론하고 모든 분야에서 필수적인 요소로 자리잡고 있습니다. 잘 만든 영상광고가 매출로 이어진다는 사실은 검증되었고, 그 중요성은 나날이 증가하고 있습니다.하지만, 영상제작 전문기술 없이 광고영상을 제작한다는 것은 시간과 비용적인 측면에서 매우 어려운 일입니다. 광고영상을 SNS에 업로드 하고 싶은 마케터나 창업가들은 영상 전문가나 디자이너가 되는 것을 꿈꾸지 않습니다. 단지 자신의 서비스와 제품이 멋지게 홍보될 영상을 원하고 있습니다.더브이플래닛은 전문기술 없이도 누구나 쉽고 빠르게 광고영상을 제작할 수 있는 브이플레이트를 통해 많은 마케터들과 창업가들이 겪는 시간과 비용에 대한 어려움을 해소할 것입니다.“더브이플래닛”에서 영상광고 생태계의 흐름을 바꿀 iOS개발자를 모집합니다.광고영상을 누구나 쉽게 만들 수 있도록 함께 고민하고 시장을 주도해나갈 분을 애타게 찾고 있어요.우리는 한사람 한사람의 소중한 능력들이 맘껏 발휘될 수 있도록 존중과 배려로 서로를 응원하고 있어요. 우리와 함께 소중한 능력을 맘껏 발휘하실 분들의 많은 지원 부탁드려요.
조회수 2309

하얗게 불태웠다. 트레바리 홈페이지 리라이팅 후기

1월부터 4월까지 한 시즌에 걸쳐 트레바리 홈페이지를 다시 구현하였다. 겉으로 보이는 UI/UX 디자인 개편을 넘어, DB 설계와 서버 및 웹 페이지 개발까지 새롭게 진행했다. 기존의 홈페이지를 완전히 버리고, 새로운 아키텍처를 가진 홈페이지를 구현하여 데이터를 이전하는 일이었다.4개월 동안 반응형 웹 사이트 1개, 크루/파트너 어드민 사이트 2개와 함께 서버까지 구현했다..지난 시즌 동안 홈페이지의 여러 기능들을 개선하면서 변화가 필요하다고 생각했다. 단순히 '남이 짜둔 코드가 별로예요'에서 나온 불편 때문만은 아니었다. 회사가 겪는 빠른 성장에 발맞춰 시스템이 뒷받침이 되어줘야 하는데 기존의 아키텍처로는 그러기가 어려웠다. 적은 트래픽에도 툭하면 죽는 서버 덕에 접속이 몰리는 멤버십 신청 기간 동안에는 서버 비용을 배로 늘려야 했고, 푸시 알림의 필요성으로 모바일 앱을 구현하고 싶어도 별도의 API 서버가 존재하지 않아서 시도하기 힘들었다. 결국 지난 시즌 말, 홈페이지를 새로운 아키텍처에서 다시 구현하겠다는 호기로운 결정을 내렸다.처음 시작할 때만 해도 아주 큰 어려움은 없겠거니 했다. 트레바리 입사 이전에 여러 프로젝트를 턴키로 수주받아 진행했던 경험이 있었기 때문이었다. 그러나 몇천 명, 많게는 몇만 명이 접속하는 운영 중인 서비스를 만들어 이전하는 일은 새 서비스를 만드는 일과는 또 다른 일이었다.게다가 이전 글에서 이야기했던 것처럼 트레바리에는 풀타임으로 일하는 개발자나 디자이너가 나 혼자이기 때문에 해야 하는 일이 절대적으로 많았다. 개발 맨 아랫단부터 웹 페이지의 디자인까지 기간 내에 해내는 것은 쉽지 않은 일이었다. 덕분에 매일이 도전이었던 4개월을 보냈고, 런칭 3주 전쯤에는 잠시 슬럼프를 겪기도 했다. 하지만 트레바리가 한 번은 꼭 겪어야 하는 과제였기에 꾸역꾸역 해내면서 런칭까지 왔다. 오늘은 그 이야기를 정리해보려고 한다.리라이팅왜, 무엇을 했나요?1. 과도한 서버 비용과 느린 속도홈페이지를 다시 만들어야겠다는 생각을 가장 많이 하게 된 이유는 비용과 속도였다. 동시 접속 유저 수가 천 명이 안 되는 서비스에서 월 100만 원가량의 서버 비용이 나왔고, 평균 페이지 로딩 속도가 3초를 넘어갔다.그동안 트레바리 홈페이지는 여러 프리랜서 개발자들이 거쳐가며 유지되느라 DB나 쿼리 구조에 대한 고민을 장기적으로 해볼 기회가 없었다. 요청받은 기능을 구현하기 위해 필요한 테이블을 그때그때 만들고, 활용할 데이터가 다른 테이블에 있다면 조인을 해서 불러왔다. 그 결과 대부분의 데이터 요청에 n+1 쿼리가 존재했고, 한 명의 유저가 한 번의 접속만으로도 수많은 쿼리 요청을 하는 상황이었다.최대한 기존의 홈페이지에서 이를 해결해보려고 노력했다. 처음 입사했을 때만 해도 10초 이상의 시간이 들었던 독서모임의 리스트 요청을 3초까지 줄이고, 접속자 수가 40%가 늘어났어도 서버 비용을 늘리지 않을 수 있었다. 그러나 상대적으로 빨라졌을 뿐 느린 편이라는 점은 변함이 없었다. 매 시즌 멤버 수가 30~40% 씩 증가하는 추세대로라면 다음 시즌에도 비슷한 비용을 유지할 수 있을 거란 보장 또한 없었다.여기서 더 개선하려면 DB 구조를 변경하고, 수많은 코드를 갈아엎어야 했다. 필요하다면 하면 되는 일이었지만 기존의 아키텍처인 레일즈 웹 애플리케이션을 유지한다면 당장의 퍼포먼스를 개선하더라도 언제까지 높은 퍼포먼스를 유지할 수 있을지 의문이었다. 성장에 따라 요구되는 시스템들을 다 지원해줄 수 있을지도 미지수였다. 언젠가 아키텍처를 변경해야 한다면 최대한 빠른 시일인 지금 하는 것이 효율적이라 판단했다.Heroku에서 관리하던 서버를 AWS의 EC2로 변경하면서 DB 또한 PostgresSQL에서 AWS 의 DynamoDB로 이전했다. RubyOnRails를 사용하여 단일 웹 애플리케이션으로 구현했던 홈페이지를 Typescript를 기반으로 프론트엔드와 백엔드를 나눴다. React로 사용하여 웹사이트를 구현하였고, Node.js로 GraphQL을 적용하여 서버를 구현하였다.덕분에 월 100만 원가량이 들던 비용을 월 30만 원까지 낮출 수 있었다. 속도는 이전보다는 빨라졌으나 기대만큼 빨라지지는 않아 캐싱 등을 적용하여 차츰 줄여나가고 있다. 변경한 현재 아키텍처로는 트래픽이 늘어나더라도 이전처럼 비용을 배로 늘리지 않아도 되었으며, 다양한 방법으로 속도를 개선하는 작업도 시도해 볼 수 있게 되었다.2. 기술 부채기술 부채가 쌓인 모습 (...)이미지 출처: 스마트스터디앞서 말했던 것처럼 기존 홈페이지는 여러 프리랜서 개발자들이 거쳐간 터라 뻔하게도 기술 부채가 쌓였다. 홈페이지와 관련된 문서는 없고, 크루들은 사용하는 기능들을 부분적으로만 알고 있었다. 그런 상황에서 몇 명의 크루들이 퇴사와 입사를 거치니 그나마 구전으로라도 유지되던 홈페이지 정보가 점점 사라졌다.홈페이지에 대해 궁금한 점이 생기면 직접 코드를 뒤적이며 파악해보는 수밖에 없었다. 그래서 모든 크루들이 유일한 개발자인 나에게 물어보는 것 말고는 홈페이지에 대해 알 수 있는 다른 방도가 없었다. 이 외에도 새로운 기능을 구현했더니 미처 파악하지 못한 곳에서 버그가 터진다거나, 안 쓰는 줄 알고 삭제한 코드가 사실 어디선가 제기능을 하고 있거나 하는 때도 잦았다.이런 기술 부채를 청산하려면 1) 대부분의 기능들을 파악하고 있는 담당자가 있고 2) 지원하는 기능들을 잘 정리한 문서가 필요했다. 1번은 직접 처음부터 리라이팅을 진행했으니 자연스레 해결되었으나, 다른 크루들도 많은 기능들에 대해 파악하고 있으면 더 효율적일 거라 생각했다. 그래서 새로 구현되는 기능이나 변경 사항에 대해서 매주 주간 회의 때 공유를 하고 있으며, 배포를 할 때마다 실시간으로 에버노트와 슬랙의 배포 노트 채널을 통해 배포 내용을 공유하고 있다. 이전에도 하고 있었으나 더 잘, 자주, 자세히 해야겠다고 새삼 깨달았고 노력 중에 있다.2번을 위해서는 홈페이지 기능 설명에 대한 문서를 작성하기 시작했다. 아직 가장 효율적인 포맷이 무엇인지는 찾지 못해서 방황하고 있지만 최대한 쉽고 자세하게 쓰는 방향으로 진행 중이다.사랑과 따뜻함이 넘치는 우리 크루들 3. 복잡하고 이유 없는 UI기존의 홈페이지는 의외로(?) 다양한 기능들이 있었지만 유저들이 모르거나 사용하지 않는 경우가 많았다. 대부분의 기능들과 인터페이스들이 중요도에 대한 고민 없이 '있으면 좋을 것 같다'는 이유로 덕지덕지 추가되었다. 게시판이나 다이어리 같은 메뉴들은 사용률이 채 5%가 안되지만 상단 메뉴에 자리 잡고 있었고, 북클럽 리스트의 페이지에는 딱 한 번만 읽으면 되는 설명글이 화면의 반을 차지하고 있었다.멤버들이 트레바리에서 가장 활발하게 누려줬으면 좋겠다고 생각하는 활동은 독서모임과 이벤트다. 내 클럽이 아닌 다른 다양한 클럽에도 참여해보고, 살면서 해보지 못한 경험들을 이벤트를 통해 체험해봤으면 좋겠다. 그런 고민으로 상단 메뉴에는 독서모임과 이벤트, 내 활동 정보를 볼 수 있는 마이페이지만 배치하였고 FAQ나 공지사항과 같은 자잘한 것들은 하단의 footer로 내리거나 일부 기능들을 임시적으로 지원하지 않기로 했다.리라이팅 전리라이팅 후직관적인 UI는 파트너 어드민에서도 절실하게 필요했다. 기존의 어드민 UI는 따로 교육이 필요할 정도로 복잡했기 때문이었다. 한 명의 파트너에게 자신이 관리하는 클럽 외의 모든 클럽 정보가 노출되었다. 클럽 정보에서도 봐야 할 정보와 보지 않아도 될 정보가 혼재되어 보이고 있었다. 파트너의 수는 점점 늘어나는데 그때마다 홈페이지까지 교육까지 따로 해야 하는 것은 리소스가 많이 드는 일이었다.파트너가 자신의 모임을 이끌기 위해 정말 필요한 일에만 집중할 수 있도록 신경 써서 구현했다. 모임에 참석하는 멤버 리스트, 모임에서 읽을 책과 발제문 등을 등록하고 수정하는 페이지, 출석 체크를 할 수 있는 기능만으로 구성했다. 항시 봐야 하는 매뉴얼과 FAQ는 따로 메뉴로 빼두었다.파트너 어드민의 모임 정보 설정 페이지 리라이팅 전과 후4. 데이터로 소통하는 회사트레바리는 점점 데이터로 소통하는 회사가 되고 싶다. 어떤 유저가 어디에서 불편을 겪고, 어떤 부분을 좋아하는지 알고 싶다. 사람들이 독서모임에 만족하면 홈페이지에서 어떻게 활동하는지, 혹여 만족하지 않았다면 그때는 또 어떻게 활동하는지 궁금하다. GA와 A/B 테스트 등의 방법들을 통해 데이터를 보며 이를 파악하고 싶다.기존 홈페이지는 전통적인 페이지 단위로 돌아가는 레일즈 웹 애플리케이션이었으므로 따로 제이쿼리 등을 사용해야지만 이를 구현할 수 있었다. 그래서 페이지 단위의 웹을 벗어나 React를 활용한 컴포넌트 단위의 웹 사이트를 구축했다. 장기적으로 계획적이고 세밀한 트래킹이 가능하도록 기반을 닦았다.또 기존의 홈페이지에서는 유저에게 오류 제보를 받아도 이를 확인해보는 것이 어려웠다. 그래서 지금의 시스템에는 Apollo engine과 Cloud watch를 이용하여 여러 로그들을 트래킹 하기 시작했다.리라이팅 런칭 2주 차,아쉬웠던 점들리라이팅 한 홈페이지를 런칭한 지 2주일이 지났다. 런칭 후에 한참을 정신없이 보내다가 이제야 조금 숨을 돌릴 수 있게 되어 이 글도 쓰기 시작했다. 런칭만 하면 마음이 편해질 거라 예상했는데 막상 다가오니 그렇지도 않았다. 더 바쁘고 정신없던 것은 물론이요, 아쉬운 점들만 눈에 밟혀서 마음이 무거웠다. 잘한 것보다 아쉬웠던 점들이 나를 더 성장하게 만들어 줄 것이라는 생각으로 스스로를 위로하여 어떤 것들이 아쉬운지도 정리해보았다.1. 트래픽이 몰리는 피크타임에 대한 대비 미흡배달의 민족이 식사 시간마다 트래픽이 몰리는 피크타임이 존재하듯, 트레바리도 독후감 마감 시간이라는 피크타임이 존재했다. 유저들이 모든 시간 대에 일정하게 접속하는 하는 것이 아닌 특정 시간에 몰아서 접속하는 것을 고려하여 그때의 속도를 잘 잡았어야 했다. 이를 미리 고려하여 캐시와 같은 여러 대비책들을 세워두었다면 유저들이 느린 홈페이지가 주는 불편을 덜 겪었을 거라고 생각한다.2. 치밀하지 못한 안내런칭 직후 오는 많은 문의들이 실제 오류가 아닌 제대로 된 안내가 없어 오류로 인지하는 경우였다. 예를 들어 기존에는 있었으나 사라진 주소와 같은 404 페이지 접근 시에는 안내 후 메인 페이지로 보내버리거나 하는 안내가 있었으면 많은 문의들을 대응하지 않아도 됐을 것이다.3. 운영 크루 업무 이해도 낮음리라이팅을 할 때 다른 크루들과 커뮤니케이션을 하는 일에 많은 리소스를 쏟지 않았었다. 다른 크루들의 업무에 대해 꽤 잘 이해하고 있다고 생각했기 때문이었다. 내가 생각하기에 필요할 것 같은 기능들만 어드민에 담았고, 그 결과로 크루들이 런칭 직후에 엄청난 불편과 수고로움을 겪게 만들었다.4. 조급함리라이팅을 진행하는 기간 동안 마음이 급해서 눈앞에 보이는 기능들을 빨리 쳐내는 것에 급급했다. 그러다 보니 각 기술에 대한 문서들을 꼼꼼하게 읽어내지 못해 놓친 부분이 많았다. 특히 한 번도 경험해본 적 없는 각종 브라우저와 브라우저 버전, PC와 모바일 대응 등에서 많이 놓쳤다. 평소 웹 표준 관련 문서를 잘 읽어두었다면 이런 실수는 덜하지 않았을까 생각했다. 또 틈틈이 작성했던 코드를 되돌아보고 개선하는 시간도 가졌어야 했는데 조급함 때문에 그러지 못했다. 이런 부분들은 개발자가 평소에 항시 주의해야 할 모습이라 생각했다.이번 리라이팅을 시작으로 트레바리가 온라인의 경험까지 멋진 서비스가 될 수 있기를 희망한다. 아직은 부족한 점이 많지만 사람들이 독서모임에 참석하기까지 겪는 온라인에서의 경험을 멋지게 만들고 싶다. 필요한 기능들을 적재적소에 구현하고, 말보다는 UI로 커뮤니케이션을 잘하는 개발자가 되기 위해 계속 노력할 것이다.지난 4개월 동안 참 힘든 시간도 많았다. 그럼에도 불구하고 크루들과 주변의 개발자분들에게 여러 도움을 받으면서 어려운 난관들을 헤쳐나갈 수 있었다. 홈페이지 변경이 아니어도 바쁜 일이 많은 시즌 시작 시기에 홈페이지 관련 문의가 쏟아졌다. 그런 상황에서 나를 탓하기보다는 오히려 걱정해주고 격려해주는 동료들이 있었다. 새삼스레 좋은 사람들과 함께하고 있다는 생각을 하며 일을 더 열심히, 잘 하는 것으로 보답하고 싶다고 생각했다.#트레바리 #기업문화 #조직문화 #CTO #스타트업CTO #CTO의일상 #인사이트
조회수 2647

Next.js 튜토리얼 4편: 동적 페이지

* 이 글은 Next.js의 공식 튜토리얼을 번역한 글입니다.** 오역 및 오탈자가 있을 수 있습니다. 발견하시면 제보해주세요!목차1편: 시작하기 2편: 페이지 이동 3편: 공유 컴포넌트4편: 동적 페이지  - 현재 글5편: 라우트 마스킹6편: 서버 사이드7편: 데이터 가져오기8편: 컴포넌트 스타일링9편: 배포하기개요여러 페이지가 있는 Next.js 애플리케이션을 만드는 방법을 배웠습니다. 페이지를 만들기 위해 한 개의 실제 파일을 디스크에 만들어야 합니다.그러나 진짜 애플리케이션에서는 동적 컨텐츠를 표시하기 위해 동적으로 페이지를 생성해야 합니다. Next.js를 사용해 이를 수행하는 여러 방법들이 있습니다.쿼리 문자열을 사용하여 동적 페이지를 생성해봅시다.간단한 블로그 애플리케이션을 만들 예정입니다. 이 애플리케이션은 home (index) 페이지에 전체 포스트 목록을 가지고 있습니다.포스트 제목을 클릭하면 뷰에서 각 포스트를 볼 수 있어야 합니다.설치이번 장에서는 간단한 Next.js 애플리케이션이 필요합니다. 다음의 샘플 애플리케이션을 다운받아주세요:아래의 명령어로 실행시킬 수 있습니다:이제 http://localhost:3000로 이동하여 애플리케이션에 접근할 수 있습니다.포스트 목록 추가하기먼저 home 페이지 안에 포스트 제목 목록을 추가해봅시다.pages/index.js에 다음과 같은 내용을 추가해주세요.위의 내용을 추가하면 다음과 같은 페이지가 보입니다:첫 번째 링크를 클릭하면 404 페이지가 나지만 괜찮습니다.페이지의 URL은 무엇인가요?- /?id=Hello Next.js- /post?title=Hello Next.js- /post?title=Hello Next.js- /post쿼리 문자열을 통해 데이터 전달하기쿼리 문자열(쿼리 파라미터)를 통해 데이터를 전달했습니다. 우리의 경우에는 "title" 쿼리 파라미터입니다. 다음에서 보이는 것처럼 PostLink 컴포넌트를 이용해 구현해봅시다:(Link 컴포넌트의 href prop를 확인해주세요.)이처럼 쿼리 문자열을 이용하여 원하는 모든 종류의 데이터를 전달할 수 있습니다."post" 페이지 생성이제 블로그 포스트를 보여줄 post 페이지를 생성해야 합니다. 이를 구현하기 위해 쿼리 문자열로부터 제목을 가져와야 합니다. 어떻게 구현하는지 살펴봅시다:pages/post.js 파일을 추가하고 다음과 같이 내용을 작성해주세요:다음과 같이 보입니다:위의 코드에서 무슨 일이 일어났는지 살펴봅시다.- 모든 페이지에서 현재 URL과 관련된 내용들을 가진 "URL" prop를 가져옵니다.- 이 경우 쿼리 문자열을 가진 "query" 객체를 사용하고 있습니다.- props.url.query.title를 사용해 제목을 가져왔습니다.애플리케이션에서 몇 가지를 수정해봅시다. "pages/post.js"를 다음과 같이 변경해주세요: http://localhost:3000/post?title=Hello Next.js 페이지로 이동하면 무슨 일이 일어날까요?- 예상대로 동작할 것이다.- 아무 것도 랜더링하지 않을 것이다.- 해더만 랜더링할 것이다.- 에러를 발생시킬 것이다.특별한 prop "url"보다시피 위의 코드는 이와 같은 에러를 발생시킵니다:url prop는 페이지의 메인 컴포넌트에만 전달되기 때문입니다. 페이지에서 사용되는 다른 컴포넌트에는 전달되지 않습니다. 필요하다면 다음과 같이 전달할 수 있습니다:마치며쿼리 문자열을 사용하여 동적 페이지를 생성하는 방법을 배웠습니다. 이제 시작일 뿐입니다.동적 페이지를 렌더링하기 위해 더 많은 정보가 필요합니다. 그리고 쿼리 문자열을 통해 모든 것을 전달할 수는 없을 것입니다. 또는 http://localhost:3000/blog/hello-nextjs와 같은 깔끔한 URL을 원할 것입니다.다음 편에서 이것들에 대해 모두 배울 수 있습니다. 이번 편은 모든 것의 기초입니다.#트레바리 #개발자 #안드로이드 #앱개발 #Next.js #백엔드 #인사이트 #경험공유
조회수 1268

레진 기술 블로그 - 모두를 위한 설계. 레진 웹 접근성 가이드라인.

레진엔터테인먼트는 글로벌(한국, 일본, 미국) 서비스를 운영하고 있기에 다양한 사람들의 재능과 욕구에 관심이 있습니다. 우리는 웹 접근성에 관심을 기울여 조금 특별한 욕구를 가진 사람들의 문제를 해결하려고 합니다. 소수의 특별한 욕구는 모두의 욕구와 연결되어 있다고 생각하기 때문입니다.조금 특별한 욕구를 가진 사람WHO는 세계 인구의 15%에 해당하는 사람들이 장애가 있는 것으로 파악하고 있습니다. 그리고 보건복지부 장애인 실태조사에 따르면 후천적 장애 발생률은 90% 수준입니다. 이런 통계에 따르면 한 개인이 일생을 살면서 장애인이 되거나 일시적으로 장애를 체험하게 될 확률은 무려 13.5%나 됩니다.저는 적록 색약입니다. 약한 수준의 장애로 분류할 수 있죠. 채도가 낮은 상태의 적색과 녹색을 쉽게 구별하지 못합니다. 충전 중 적색이었다가 완충이 되면 초록색으로 변하는 LED가 박혀있는 전자제품은 전부 망했으면 개선하면 좋겠어요. 전 세계 남성의 8%가 색약이고, 여성은 0.5%가 색약입니다. 대부분 적록 색약이고 마크 저커버그도 적록 색약입니다. 만화가 이현세 선생님도 적록 색약이고요. 한편 색약인 사람은 빛의 밝고 어두움을 구별하는 능력이 뛰어난 것으로 밝혀져 있어 저격과 관측에 탁월한 능력을 발휘합니다. 숨어있는 저격수 빨리 찾기 게임을 해 보세요. 위장 사진 1, 위장 사진 2, 위장 사진 3. 색약인 사람이 이길 것입니다.전맹 시각장애인은 마우스 포인터와 초점을 볼 수 없으므로 키보드만을 사용해서 웹을 탐색합니다. 키보드와 음성 낭독에 의존하지만, 키보드 기능을 정말 잘 다루죠. 그래서 키보드 접근성 문제를 해결하면 시각장애인뿐만 아니라 키보드를 능숙하게 사용하는 사람들의 사용성이 높아집니다. 소수의 특별한 요구사항을 해결하는 것이 모두를 위한 설계와 연결되어 있습니다.결국, 누구에게나 특별히 다른 측면이 있고 그것을 고려할 때 "모두를 즐겁게 하라!"라는 우리의 좌우명에 한 걸음 더 가까워질 수 있다고 믿습니다.도저히 풀 수 없을 것 같은 숙제웹 접근성을 소개할 때 많이 듣는 질문이 있습니다.장애인이 우리 서비스를 이용해요?매출에 도움이 돼요?시간과 비용이 많이 필요하지 않아요?이 질문에 대한 제 대답은 다음과 같습니다.이용한다면 기쁠 것 같아요.큰 도움은 안 될 거예요.조금은 그렇죠. 하지만 반환이 있어요.레진코믹스와 같이 이미지 기반의 콘텐츠를 서비스하는데 웹 접근성을 준수하려고 노력한다는 것은 무모한 도전에 가깝습니다. 왜냐하면, 현재로서는 전맹 시각장애인 고려가 없고 논의조차 쉽지 않기 때문입니다.하지만 달에 갈 수 없다고 해서 일찌감치 체념할 필요는 없겠지요. 쉬운 문제부터 하나씩 풀어 나아가길 기대합니다. 로켓에 올라탔으니까 금방 갈 수 있지 않을까요?W3C 표준을 우리 언어로W3C에서는 WCAG 2.1이라는 웹 콘텐츠 접근성 지침을 제시하고 있고요. 국내 표준 KWCAG 2.1 또한 있습니다. 국내 표준은 W3C 표준에서 중요도가 높은 항목을 우리 언어로 정리한 것이기 때문에 결국 어떤 지침을 선택해서 따르더라도 괜찮습니다.하지만 표준 문서는 너무 장황하고 전문 용어가 많아 다양한 분야 전문성을 가진 직원들과 함께 보기에는 한계가 있다고 생각했습니다. W3C 표준을 근간으로 하되 비전문가도 15분 정도면 읽고 이해할 수 있을 만큼 정리된 문서가 필요했고 레진 웹 접근성 가이드라인 사내 표준을 제안하고 공개하게 됐습니다.의미를 전달하고 있는 이미지에 대체 텍스트를 제공한다.전경 콘텐츠와 배경은 4.5:1 이상의 명도 대비를 유지한다.화면을 400%까지 확대할 수 있다.키보드만으로 조작할 수 있다.사용할 수 있는 충분한 시간을 제공한다.발작을 유발하는 콘텐츠를 제공하지 않는다.반복되는 콘텐츠 블록을 건너뛸 수 있다.모든 문서의 제목은 고유하고 식별할 수 있다.링크와 버튼 텍스트는 콘텐츠의 목적을 알 수 있다.섹션에는 의미있는 마크업과 헤딩이 있다.문서의 휴먼 랭귀지 속성을 제공한다.문맥 변경은 예측할 수 있다.폼 콘트롤 요소에 설명을 제공한다.실수를 예방하고 정정하는 것을 돕는다.HTML 문법을 준수한다.WCAG 2.1 지침의 1.1.1 항목 예를 들어 볼게요.All non-text content that is presented to the user has a text alternative that serves the equivalent purpose, except for the situations listed below. 사용자에게 제공되는 모든 텍스트 아닌 콘텐츠는 아래 나열된 상황을 제외하고 같은 목적을 수행하는 대체 텍스트를 제공한다.원문 표현보다 아래와 같이 다듬은 표현이 좋다고 보는 것이죠.의미를 전달하고 있는 이미지에 대체 텍스트를 제공한다.물론 사내 지침은 너무 단순하게 표현했기 때문에 지침마다 ‘부연 설명, 관련 예시, 기대 효과, 관련 표준, 평가 도구’ 텍스트와 링크를 간략하게 제공하고 있습니다. 사실상 W3C 표준에 대한 링크 페이지라고 생각해도 괜찮습니다. 사실이 그런걸요.맺음말레진 웹 접근성 가이드라인은 사내 유관 부서 담당자분들께 공유하고 동의를 얻어 사내 지침으로 결정하고 공개할 수 있게 됐습니다. 긍정적으로 검토해 주신 사우님들 감사합니다.레진 웹 접근성 가이드라인은 W3C 표준을 요약한 버전에 불과하므로 누구라도 복제(Fork), 개선 요청(Pull Requests), 문제 제기(Issues)할 수 있습니다."Design for all, amuse everyone!"

기업문화 엿볼 때, 더팀스

로그인

/