스토리 홈

인터뷰

피드

뉴스

조회수 1428

AWS 이사하는 날

오늘 8퍼센트의 AWS 인프라를 일본에서 한국으로 옮겼다. 기술적인 내용은 이사를 리드하신 세바님이 다뤄 주시기로 하셨고, 나는 그냥 오늘을 남겨두려고 한다.(세바님이 8퍼센트 서울살자에 기술적인 내용들을 다뤄주셨다.)올해 초 AWS 서울 리전이 열리면서 도쿄에서 옮겨 가야겠다 라고 생각한 것이 벌써 수개월이 지났다. 작업을 시작하면 얼마나 걸릴지 예상이 잘 되지도 않고, 인프라 전체를 예쁘게 정리해야 한다는 부담 때문에 쉽게 손이 가지 않았다. 하지만 새로 조인하신 세바님이 AWS 이사를 가지 못해 여러 가지 제약이 생기는 답답한 상황을 참지 못하시고 총대를 메셨다. 아마 나보다 좀 더 답답하셨나 보다. :)17시에 다 함께 모여 현재 작업 진행상황과 오늘 이전 계획을 검토한 후 바로 퇴근을 했다. 긴 밤이 되리라 생각해서 조금이라도 잠을 자려고 노력은 했지만 두 아이가 있는 집에서 쉬는 것은 역시 쉽지 않더라. 지하철을 타고 23시 30분에 이모작 근무를 위해 다시 회사에 들어섰다. 이미 몇몇 분이 모여서 오늘 작업에 대한 이야기를 나누고 있었다. 아침에 만나는 것보다 왠지 반갑다. 모두 모여서 파이팅을 외치고 기념사진을 하나 찍고 작업을 시작했다.(웃으면서 시작한 작업을 웃으면서 마칠 수 있을 것인가?)일단 서버 작업 공지를 띄우고 작업을 시작한다. 지난 회사에서는 모든 서비스가 24시간 운영되었어야 했기 때문에 서버 점검 시간을 따로 갖지 못해다. 그래서 큰 서버 업데이트 작업을 할 때마다 시간에 쫓기고, 장애 발생을 실시간으로 해결해 가며 작업을 했었다. 하지만 이번에는 시간을 확보해두고 작업을 하는 것이라 그래도 마음에 좀 여유가 있었다.이전 작업을 하기 위해 각 파트를 담당하는 시니어 개발자들만 있어도 충분한데, 서버 이전을 하는 것이 흔치 않은 경험이기 때문에 주니어들도 가능하면 참여를 요청했다.(꼬꼬마들이 세바님 뒤에 쪼르르 모여서 설명을 듣고 있다)코드를 이해하기에 가장 좋은 방법은 코드를 함께 짜면서 설명을 하는 것이고, 인프라를 이해하기에 가장 좋은 방법은 인프라를 설치하는 과정을 함께 하는 것이다. 하나하나 작업을 해가면서 이런저런 이야기들을 나누었다. 이전을 하는 서버의 역할, 더 나은 아키텍처,  AWS의 역사,  AWS의 여러 가지 서비스의 세부적인 옵션에 대해서도 이야기를 나누었다.  세바님이 꼼꼼하게 준비를 해주신 덕분에 1시 30분이 되니 기본적인 이전 작업이 끝났다. 야식을 먹고 맥주를 한잔 마시고 각각의 기능들에 대한 본격적인 테스트를 시작했다.(야식은 12시 전에는 치킨을 시켜야 하고 12시 후에는 족발을 시켜야 한다)드디어 세바님을 제외한 다른 잉여 인력들이 할 일이 생겼다. 체크리스트에 있는 항목들을 하나씩 테스트 하기 시작한다. 꼼꼼하게 준비를 했지만 역시나 예상하지 못했던 문제들이 드러난다. 다행히 이전 작업을 되돌려야 할 만큼 큰 문제는 아니었기에 적절히 대응을 하고 계속 테스트를 진행했다.어느덧 시간이 흘러 3시가 되었다. http://8percent.kr 의 도메인을 도쿄에 있는 서버에서 서울에 있는 서버로 변경했다. 이제 내부 시스템들을 추가적으로 점검해야 한다. 가능하면 끝까지 확인을 하고 자리를 뜨고 싶었지만 내일 오후 사무실을 지키면서 혹시 모를 장애에 대응을 해 줄 사람이 필요할 것 같아 먼저 퇴근을 했다.집에 돌아오면서 생각해 보니 오늘 내가 한 일이 거의 없었다. 기뻤다. 서버 이전 작업을 내가 해야만 하는 일로 생각하며 계속 들고 있었는데 세바님이 먼저 나서서 이 일을 진행해 주셨다. 중요한 작업 중에 자리를 뜨는데도 전혀 불안함 마음이 들지 않았다.아침에 일어나서 슬랙을 확인했다. 슬랙에 별다른 멘트가 없는 것을 보니 큰 문제는 없나 보다. 야호! 이전된 서버가 정상적으로 운영되고 있는지 확인을 위해 심사팀도 일찍부터 출근해서 테스트를 진행하고 있었다. 회사에 도착해 보니, 나를 제외하고는 모두 밤을 새워 일을 하고 계셨다. 다들 몽롱한 표정이다. 고맙다.하루에도 8시간씩 같이 일하는 동료들이지만 왠지 이렇게 같이 밤을 지새워서 작업을 하고 나면 동지애가 생긴다. 긴 밤을 고생해준 개발팀 멤버들에게 다시 한번 고마운 마음을 전한다. 앞으로도 잘 부탁드려요!(제가 따로 드릴것은 없어서 박수를!)#8퍼센트 #에잇퍼센트 #AWS #서버 #서버이전 #인프라 #개발팀 #팀워크 #조직문화
조회수 796

블록체인 진짜 하나도 모르는 디자이너의 독학일기(1)

독학을 시작했습니다. 스터디를 가려고 했는데 수많은 전문용어들이 제 영혼을 피폐하게 만드는 바람에 정신건강이 염려되었거든요. 포토샵도 혼자 배웠으니 이것도 못할까! 라고 자신있게 책을 폈는데 못할 것 같습니다.......그래도 산 책 값이 아까우니 읽고 공부한 내용들을 하나하나 정리해보고자 합니당! 블록체인 전문가님들이 혹시 이 글을 보신다면 노잼과 지루함내지는 유치함을 느끼실 수 있으니 엄빠미소로 지켜봐주시면 감사하겠습니다. 잘못된 부분이 있다면 바로 잡아주세요!!글을 쓰면서 5가지 원칙을 지킬겁니다.1. 꼭 써야하는 고유명사가 아닌 이상 어려운 단어는 쓰지 않습니다. 중학생 정도가 이해될 수준이길 제발 바랍니다...저는 블록체인을 이제 이틀 째 공부하고 있거든요.2. 가급적 팩트체크된 내용만 쓸겁니다.3. 제대로 공부하려면 경제사, IT기술, 코딩 등등..수많은 요소가 복잡하게 들어가지만 여기선 꼭 필요한 쏘옥 뽑아서 얘기할 겁니다. 4. 짧게 쓸 겁니다.5. 가끔 쓸 겁니다.(자주 쓰기 힘든 주제임..)시작합니당 :)블록체인이 왜 태어났는지 얜 뭔지부터 알아야 할 것 같아요. 그러자면 시간을 조금 되돌려서 우리는 어떻게 사고파는 경제활동을 해왔는지 살펴볼께요.1. 아주 오래전 = 기억하기종이란게 나타나기도 전 우리는 사과5개를 빨간집에서 해가 질 무렵에 씨앗10개와 교환했다. 는 걸 기억해야 했어요. 문제는 서로가 잘못 기억하거나 한 쪽이 다르게 우겨버리면 할 말이 없다는 거죠..철저히 신뢰와 기억에 의존한 거래였어요.2. 오래 전 = 나무나 가죽에 새기기원래 사람은 두 발로 직립보행 하기 전부터도 그림을 좋아했어요. 동굴에도 그리고 돌에도 그리고, 나무나 땅에도 곧잘 그림을 그렸죠. 뭔가 주고받는 물품이 많아지면서 기억하기가 힘들어지자, 이젠 가죽이나 나무 등등에 갯수를 남기기 시작했죠. 문제점은 그 가죽이나 나무가 훼손되거나 도난당하면 증명할 방법이 없다는 거에요.'동쪽 언덕 마을에서 온 또박이가 가죽3개를 사갔다.'3. 조금 오래전 = 종이에 적기(단식부기)종이가 발명되고 아라비아 숫자와 알파벳, 한글, 한자, 인도어 등등이 발달하기 시작하면서 문서를 남길 수 있게 되었어요!!! 문서를 남긴다는 건 굉장했죠!!!오랜 시간이 지나도 기록들을 잘 보관할 수 있었어요!! 거래를 할 때에도 수입과 지출을 한 번에 (가계부처럼) 적으면서 작은 종이에 많은 내용을 남길 수 있었답니다. 하지만..여전히 문제는 사람이었어요. 이를 위조하거나 없애버리면...? 또는 불에 다 타서 없어지면??4. 얼마 전 = 적은 걸 나눠가지기(복식부기)그래서 서로 함께 같은 내용을 공유하기로 했어요. 너 하나 나 하나. 그리고 그 과정을 감시하는 회계사. 이런 과정은 우리 조선시대에서도 아주 엄격했답니다. 특히 계문화가 발달했던 우리나라는 다양한 장부를 기록했는데 '용하기'라는 계의 장부기재는 정말 엄격한 원칙이 있었답니다!!1. 임시장부를 2부 작성해요. 이 때 회계담당자 이외 심지어 2명이 더 감시하고 있어요.2. 기재를 시작해요.3. 계원들이 다 모여야 하고 적은 내용을 크게 읽어요. 이 때 의심스러운게 있으면 이의제기나 수정을 해요.4. 계장과 두 명의 감시원이 있는 상태에서 최종수정해요. 그리고 계장이 서명해요.5. 중복된 장부가 있는지 확인하고 새 장부를 넣어 보관해요.엄청나죠???..놀라운 건 현재의 블록체인의 원리도 위와 비슷해요!! 다만 사람이 일일이 적고 감시하는 게 아니라 명령어에 의해 챡챡 처리되는 것 뿐이랄까요. 하지만 이것도 결국 '물질' 이다 보니....화재나 전쟁으로 인해 소실되어 버리면 그걸로 끝이었어요.5. 요즘 = 기관이나 중앙에 맡기기왕정체제가 아니라 민주주의와 시장경제가 도입되면서 은행이나 보험사, 카드사와 같이 경제활동을 담당하는 기업과 중앙기관이 생겨나기 시작했어요! 엄청나게 거대한 정보를 크으으은 서버나 금고에 보관할 수 있었어요. 그것은 영원해보이고 사람들은 오래도록 보관할 수 있다고 생각하니 관심을 끄기 시작했죠. 내 돈은 금고에 잘 있을 거니까요.하지만, 자본주의는 그런게 아니었어요. 은행은 내 돈을 다른 사람에게 대출로 빌려주고 그 이자로 돈을 벌어요. 그리고 다른 사람이 갚은 돈으로 다시 내 예금을 채우죠. 졸라 돌려막기인 거에요. 사람들이 끊임없이 돈을 빌리고 다시 갚을 수 있게 다양한 상품들을 만들어요. 이 방식은 굉장히 효율적이고 아무 문제가 없을 것 같이 보였어요.하지만, 해킹을 당했어요.은행을 털렸어요서브프라임 모지기론 사태처럼, 무리한 상품의 실패는 수백개의 기업을 무너뜨렸어요. 수많은 사람들의 돈이 한 순간에 날아갔어요.서버가 먹통이 되어 거래가 안되는 경우도 있어요.지진 등의 천재지변이 나면 내 기록은 사라지고 말아요.단순히 큰 사옥을 지닌 곳이니까 영원불멸할 것 같았던 중앙기관도 하루 아침에 무너질 수 있단 사실을 우린 수 차례 경험했어요. 그럼에도 우린 뭘 어떻게 해야할 지 몰랐어요. 우리가 할 수 있는 건 사고가 터지면 변호사를 써서 소송을 하는 것 뿐이었어요. 우린 은행의 상품이 정확히 어떤건지, 보험약관이 뭔지... 카드사는 어떤 원리로 움직이는지...내 세금은 어떻게 쓰이고 있는지...우리 돈이 어떻게 거래되고 내 돈을 가지고 그들이 무엇을 하는지 하나도 몰라요. 그냥 속수무책으로 그들만 믿고 있는 거예요. 6. 블록체인의 탄생 = 모두가 장부를 가질 수 있게그래서 생각해봤어요. 한 곳에 모여있으니 문제가 생긴다면, 쪼개면 되지 않을까? 은행 한 곳을 터는 것은 쉽지만 1,000여명을 한꺼번에 터는 것은 불가능할테니까. 계모임에서 쓰던 그 장부를 엄청나게 많이 만들어서 모두가 가지면 어떨까? 누굴 못 믿거나 위조하거나 털리거나 불나서 사라질 일이 없을 거 아냐?? 라는 생각을 말이죠. 그런데 친구가 질문을 하네요!!친구 : 그런데 어떻게??나 : 인터넷이 있잖아!! 내가 온라인상에서 거래하면 그 기록이 남잖아~ 그걸 모두가 공유하는거지! 친구 : 모두가 누군데?나 : 응 그건 이제부터 모아야해!!친구 : 그럼 어쨌든 모인 사람들에게 모두 공유하면 내가 어제 김치한포기 시킨것도 다른 사람이 알게 되는거야??나 : 아니지;;; 니가 뭘 시켰는지 그딴 건 관심없어..그냥 얼마 거래를 언제 몇시몇분몇초에 어떻게 했는가만 기록에 남는거야! 그리고 다른 사람은 그걸 직접 눈으로 볼 수 있는 게 아냐.생각해봐. 넌 브런치 로그인한 기록을 눈으로 다 볼 수 있어? 며칠 몇시에 얼마나 로그인했는지 알 방법이 없지? 하지만 그 기록이 있을까 없을까? 그렇지, 반드시 있다구. 범죄수사할때도 그러자나. 우리 화면에는 시간/내용밖엔 안뜨는 문자메시지지만, 실제로 서버에는 발신위치, 수신위치, 번호정보 등등이 모두 숨겨져 있잖아. 또 하나! 너가 네이버에서 틴트를 검색하면 나중에 페북에서 틴트광고가 뜨지 않아? 우리의 방문기록이나 클릭한 기록들이 모두 남아있기 때문이야.이렇게 우리가 눈으로 보는 화면 뒤에는 수많은 정보들이 컴퓨터만의 전기신호로 저장되어 있어. 우리가 말하는 장부도 이런 식으로 저장되어 있는거라구.  물론 필요하다면 그걸 화면으로 띄울 수 있는 명령어를 만들 수도 있겠지.친구 : 그건 이해했어, 내가 직접 볼 순 없지만 마치 사이트 방문기록처럼 어딘가에 거래내역이 다 남아있다는 얘기지?... 그런데 아까 지금부터 모아야 한다는 사람들은 어떻게 모으는거야??나 : 그건!!..바로!!!! 다음에 설명해줄께!!또 공부해서 돌아올께용!!
조회수 1146

EOS Smart Contract 를 위한 준비

EOS Smart Contract 를 위한 준비와 토큰 발행 그리고 C++를 활용해 토큰의 간단한 기능을 개발해 보겠습니다.환경 구성 및 지갑 생성은 SAM 님의 아래 2글을 참고해 주시기 바립니다.EOS — 설치 및 실행 (1/2)EOS — 동작구조 및 환경설정(2/2)지갑 생성하기SAM 님의 포스트를 참고 하셨다면 아마 다음과 같이 ‘default’ (별도의 이름을 지정하지 않았을 시) 지갑을 생성 하셨을 겁니다.이 지갑을 사용하여 계정을 Create 한 후 Key 를 Import 하겠습니다.Key 생성하기$ cleos create key위 명령을 실행 하시면 다음과 같은 화면을 얻을 수 있습니다.create key 명령의 결과**주의 : Private Key는 Public Key의 소유를 증명하는 중요한 개념으로 절대 타인에게 노출하면 안됩니다.AdditionalKey 생성 후 지갑에 import 하기 귀찮으시다면 생성된 지갑에서 바로 Key 를 생성하셔도 됩니다.$ cleos wallet create_key위와같이 key가 생성 됩니다. 하지만 public key 만 보이기 때문에 하단 명령 입력 후 지갑 key를 입력하면 private key를 확인할 수 있습니다.$ cleos wallet private_keys지갑에 Key import하기지갑은 Public Key — Private Key를 저장하는 저장소 입니다. 생성된 키를 지갑에 저장하기 위해 다음과 같은 명령어를 입력합니다.$ cleos wallet import-n : 옵션을 사용하면 지갑의 이름을 지정합니다. 지정하지 않는다면 기본 생성된 default 지갑으로 지정됩니다.위 명령을 입력 하면 key 가 임포트 되었다는 결과를 확인 할 수 있습니다.** 만약 지갑을 Unlock 한 상태가 아니라면 ‘private key: Error 3120003: Locked wallet’ Exception 이 나옵니다.unlock 을 위해 다음 명령을 실행한 후 wallet 생성시 저장했던 Key를 입력하여 Unlocked 상태로 만들어 줍니다.$ cleos wallet unlock password: Unlocked: default(Optional) 지갑에 저장된 Key 리스트 확인다음 명령어를 입력하여 지갑에 key 가 잘 import 됐는지 확인합니다.$ cleos wallet keys계정 생성eosio.token 이라는 이름으로 계정을 생성하도록 하겠습니다.** 지갑과 Key 그리고 계정에 관해서는 Hexlant 미디움에 게재될 예정입니다.$ cleos create account eosio eosio.token EOS63kstp8kthzJY3rAotp1LAxUDbWk4MywReG578R2ddbktrDHYKcreator : eosioaccount name : eosio.tokenowner key : 지갑에 import 된 keyAdditional본 포스팅은 local 환경에서 빌드 후 System Contract 들이 적용되지 않은 상황을 가정하였습니다. 만약 Public Network 환경에서 접속 시 eosio 와 eosio.token을 사용할 수 없습니다.또한 계정이름은 다음과 같은 규칙을 따릅니다.- 12문자- 12345abcdefghijklmnopqrstuvwxyz 만 사용 가능** 만약 ‘Error 3090003: provided keys, permissions, and delays do not satisfy declared authorizations’ 에러 발생 시 eosio 에 대한 key 를 지갑에 import 해야 합니다.eosio 에 대한 정보는 다음과 같습니다.public key: EOS6MRyAjQq8ud7hVNYcfnVPJqcVpscN5So8BhtHuGYqET5GDW5CVprivate key: 5KQwrPbwdL6PhXujxW37FSSQZ1JiwsST4cqQzDeyXtP79zkvFD3위 과정을 모두 마쳤다면, EOS 지갑과 키 그리고 계정에 대한 권한을 모두 가지고 있는 상태가 됩니다. 다음 포스팅에서는 이 계정을 사용 하여 Token 을 발행하는 방법을 알아보도록 하겠습니다.감사합니다#헥슬란트 #HEXLANT #블록체인 #개발자 #개발팀 #기술기업 #기술중심
조회수 1867

Golang 체험기

AWS EC2 태그를 Kubernetes Label로 뽑아주는 Vungle/Labelgun에 문제가 많아서 이번에 대대적인 수술을 하였다. 하루에 수백번씩 Pod가 죽는 통에 도저히 참을 수가 없었다. 아무튼 이와 관련한 이야기는 다른 글에서 썰을 풀고 여기서는 Go에 초점을 맞추고 경험담을 늘어놓아볼까 한다.장점기술 탐색 — golang이란 글에서는 주로 부정적인 견해를 보였지만 최근에는 생각이 바뀌었다. 무엇보다 Docker와 같은 컨테이너 기반 서비스에는 Golang과 같은 언어가 Java 또는 Python 같은 언어보다 분명 장점이 있다. 미리 빌드한 바이너리 파일만 컨테이너에 넣으면 되기 때문에 가볍다. Java Runtime을 컨테이너에 넣을 때보다 월등히 가볍다. 여기서 가볍다 함은 컴퓨팅 리소스 측면, 컨테이너 빌드 구성의 용이함 모두를 뜻한다. 물론 전통적인 C/C++ 환경도 비슷하지 않냐라고 의문을 품는 사람도 있겠지만 Golang은 goroutine등으로 동시성 제어를 런타임 시스템이 알아서 제어해주기 때문에 언제든 머신을 갈아치울 수 있는 클라우드 환경에 훨씬 적합하다. 그 외에도 현대적인 언어의 여러 장점을 누릴 수 있는데 이는 다른 글이 훨씬 잘 설명해놓았기에 자세한 언급은 하지 않으려 한다.GOPATH 를 처음 여행하는 GOPHER 들을 위한 GOLANG 안내서단점Application Performance Monitoring을 구축하기가 생각보다 어렵다. New Relic과 DataDog Trace 모두 개발자가 코드를 상당량 추가해줘야 한다. 보통 에이전트만 붙이면 알아서 잘 작동하는 Java APM에 비해 상당히 과거의 방식이다.func saveFile(ctx context.Context, path string, r io.Reader) error { // Start a new span that is the child of the span stored in the context. If the span // has no context, it will return an empty one. span := tracer.NewChildSpanFromContext("filestore.saveFile", ctx) defer span.Finish() // save the file contents. file, err := os.Create(path) if err != nil { span.SetError(err) return err } defer file.Close() _, err = io.Copy(file, r) span.SetError(err) return err }소스코드를 바이너리 코드로 컴파일하기 때문에 빌드 및 테스트 피드백 주기가 길다. C++을 한참 다루던 시절로 돌아간 느낌이다. 한마디로 답답하다.게다가 npm과 같은 패키지 관리 시스템이 없고 Git과 같은 소스버전관리시스템을 바로 접근해 사용하기 때문에 초기 빌드가 엄청나게 느리다. Git clone 보다는 이미 잘 패키징된 파일 몇 개를 다운로드 받는 쪽이 월등히 빠를 수밖에 없지 않나?패키지 관리 시스템과 더불어 빌드와 관련해 그 존재가 매우 의심쩍은 게 하나 있으니 바로 GOPATH이다. Python의 virtualenv처럼 프로젝트별로 완전히 고립된 개발환경을 갖추면 여러 모로 장점이 많은데 왜 이런 환경변수가 존재해야 하는가? 왜? 대체 왜?마지막으로 한가지 더. Go는 goroutine 등으로 병렬작업을 지원하여 분명 편하다. 하지만 순수한 함수형 언어가 아니고 Immutable한 데이터를 메시지 패싱하는 방식이 아니기 때문에 애먹는 부분이 많다. goroutine과 channel을 장점으로 내세우는만큼 최소한 표준 라이브러리는 동시성을 최대한 고려해서 설계했을 법한데 그렇지 않은 부분이 많아서 당혹스러웠다. 물론 이러한 설계는 그만한 장점이 있지만 한동안 유행하던 다수의 언어와는 방향이 달라서 다소 적응하기 힘들었다.#데일리 #데일리호텔 #개발 #개발자 #개발팀 #스킬스택 #기술스택 #스택도입기 #후기 #golang
조회수 975

DevOps 문화 안에서의 APM의 역할 [1] (DevOps+JENNIFER)

 DevOps의 시작언제나 그랬듯이 소프트웨어 개발 트렌드는 계속 변화하고 있다. A부터 Z까지 모든 것을 새롭게 개발했던 것과 달리 아키텍처나 사용하는 용도에 따라 개방형 플랫폼이나 오픈소스 등을 활용하여 원하는 소프트웨어를 쉽게 개발할 수 있게 되었다. 또한 클라우드로 인해 애플리케이션과 서비스 개발에 대한 새로운 패러다임이 나타나고 있다. 기존의 온-프레미스 환경에서는 물리적 서버 준비, 운영체제 설치, 서비스 배포 등에 수많은 시간이 걸렸지만, 클라우드를 활용하면서 단시간에 원하는 자원을 준비하고 배포할 수 있게 되었다.이러한 변화로 개발자의 영역이 좀 더 넓어지는 계기가 되었다. 이는 전통적인 비즈니스 환경에서 개발, 빌드, 테스트, 배포, 운영에 이르는 프로세스를 효율적으로 운용할 수 있게 되어 고객의 요구사항을 빠르게 반영할 수 있게 되었다. 이것이 바로 DevOps의 시작이다. 하지만 다양한 오픈소스의 탄생과 클라우드 환경의 확산 등으로 인해 정말로 새로운 기능에 대한 개발이 빨라졌을까? 그렇다면 이에 따른 문제는 없을까? 개발 프로세스의 병목 구간DevOps의 필수 조건인 테스트 및 배포의 자동화가 이뤄지면 운영 단계에서는 반영된 사항들에 대해 주기적으로 모니터링을 해야 한다. 만약에 반영된 소스코드에 장애를 발생시킬 수 있는 잠재적 버그가 존재한다면 이를 어떻게 운영 단계에서 찾을 수 있을까? 예를 들어 특정 서비스의 피크타임에 부하가 급증한다면 앞서 말한 상황에 대한 버그가 발생할 확률이 상대적으로 높아진다. 하지만 장애의 원인이 될 수 있는 요소는 매우 다양하기 때문에 단순히 트래픽 문제로 속단할 수는 없다.직접 개발한 소프트웨어만의 문제가 아닐 수도 있으며, 제품 개발시 생산성 향상을 위해 도입된 다른 종류의 오픈소스에서 문제가 될 수도 있다. 실은 이런 류의 프로젝트들은 상용 제품이 아니므로 문제가 발생하면 상당히 곤란한 경우가 생기곤 한다. DevOps를 위한 환경이 구성되고, 고객의 요구사항을 빠르게 반영할 수 있는 시스템이 갖춰졌더라도 결국에는 앞서 말한 다양한 종류의 잠재적, 환경적인 문제들로 인해 병목이 발생할 수 있다.  모니터링 단계에서 APM의 역할개발 프로세스의 마지막 관문인 모니터링 단계는 DevOps에서 매우 중요한 역할을 한다. 하지만 안타깝게도 이미 반영된 실제 서비스에서 모니터링을 성공적으로 마치고 피드백 수집 단계로 넘어가기 위해서는 앞서 말했던 장애의 원인을 빠르게 진단해야 한다. 경우에 따라 많은 시간이 소모되기도 하기도 하며, 이는 바로 생산성 저하로 이어진다. 또한 새로운 프로세스 진행을 더욱더 보수적으로 만드는 원인이 된다.DevOps를 완벽하게 실현하기 위해서는 모니터링 단계에서 서비스 배포 이후의 서버에 들어오는 트랜잭션에 대한 상태를 배포 전과 비교할 수 있어야 하며, 응답을 지연시킬만한 요소들을 빠르게 인지할 수 있어야 한다. 그리고 배포된 소스코드로 인해 서비스 장애가 발생하는 상황이 온다면 이를 처리하기 전까지 어떻게든 서비스 장애를 지연시켜야만 한다. 이러한 이유로 DevOps 진영에서는 APM의 역할은 매우 중요한 이슈이다. 우리는 제니퍼를 통해 앞서 말한 기능들을 활용하는 방법에 대해 알아볼 것이다. 모니터링 프로세스모니터링 단계는 아래 그림과 같이 문제의 발견 및 조치, 문제해결시 재배포 단계로 나눌 수 있다.  제니퍼 대시보드를 통해 액티브서비스 상태와 트랜잭션 변화 추이를 모니터링 할 수 있는데, 만약에 새로 배포된 소스코드에 문제가 있다면 처리 중인 액티브서비스가 쌓이게 되고 , 트랜잭션 분포도 차트는 기존에 그려졌던 패턴과 다르게 보여지게 된다.이런 시점에 운영에서는 설정 여부에 따라 이벤트를 발생 시킬 수 있다. E-Mail이나 SMS, Slack과 같은 메신저 등으로 각각의 담당자들에게 서비스 상태를 알려줄 수 있으며, 담당자에게 이벤트 메시지가 전달되었다면 제니퍼를 통해 두가지 조치를 할 수 있게 된다. 먼저 개발자는 스마트 프로파일링 기능을 통해 원인분석을 하고, 운영에서는 서비스가 최악의 상태가 되기 전에 트랜잭션 유입을 차단하여 다른 화면으로 리다이렉트 시켜주는 PLC 기능을 사용할 수 있다.제니퍼에서는 서버에서 하나의 요청에 대한 처리가 끝나면 곧바로 수집되는 데이터를 트랜잭션이라하며, 현재 수행 중인 상태에 대한 실시간 데이터를 액티브서비스라고 정의한다.   모니터링 기준 값 설정서비스를 배포하기 전에 모니터링 단계를 원활하게 수행하기 위해서는 제니퍼 관리 화면에서 몇가지 설정을 해야한다. 먼저 서비스 장애 발생시 이벤트 알림 및 서비스 부하량 제어 설정의 기준이 되는 값인 전체 에이전트의 평균 액티브서비스 개수를 알아야 한다. 하지만 서비스가 운영되는 환경에 따라 기준 값이 너무 다르기 때문에 어느 정도 안정적으로 서비스가 운영되고 있다고 생각하는 시점에 대략적으로 기준 값을 정하면 된다.에이전트란 모니터링 대상 애플리케이션에 기생하여 성능 데이터를 수집하고, 이를 서버로 전송하는 역할을 하는 모듈을 말한다. 참고로 모니터링 대상 애플리케이션은 플랫폼 환경에 따라 차이가 있을 수 있는데, 일반적으로 WAS(Web Application Server)나 웹 서버를 말한다.  액티브서비스는 처리가 완료되지 않은 상태이므로 서비스 장애의 원인분석을 위한 데이터로는 적합하지 않다. 그렇기 때문에 액티브서비스 개수는 기준 값이 될 수 없으며, 개발자는 처리가 완료된 트랜잭션 데이터의 응답시간을 기준 값으로 제니퍼의 프로파일링 관련 설정을 해야 한다. 설정된 값을 기준으로 트랜잭션 분포도 차트에서 가상의 선을 긋고, 그 선 위에 있는 트랜잭션을 대상으로 스마트 프로파일링 기능을 수행할 수 있다.  본문에서는 모니터링 단계에서 직면하게 되는 문제점과 이를 해결하기 위한 APM의 역할과 필요성 대한 이야기를 했다. 다음 편에서는 본격적으로 제니퍼를 활용하여 모니터링 프로세스를 어떻게 수행하는지에 대해 알아볼 것이다.2편에서 계속...
조회수 2331

데이블 주니어 개발자 직무 인터뷰

오후 두 시의 회의실. 개발자들의 스터디하는 소리로 뜨겁다. 국내 최고의 추천 기술을 보유했다는 데이블. 10년 이상의 경력을 가진 노련한 시니어 개발자들 사이에서, 스쳐 지나가는 단어 하나하나 놓치지 않으려 귀 기울이고 있는 주니어 개발자들을 만났다.안녕하세요? 간략한 소개와 두 분의 업무에 관해 설명해주세요.형주: 안녕하세요? 저는 데이블 개발팀 최형주입니다.저는 백앤드 개발팀의 신입 개발자로서 데이블의 인프라 관리, 백앤드 개발 그리고 가끔 데이터 분석을 하고 있습니다. 주로 사용하는 서버는 클라우드 플랫폼인 AWS(Amazon Web Service)과 Nodejs 이고, MySQL, Redshift, Python을 사용하여 데이터 처리와 분석을 하고 있어요.성현: 안녕하세요. 저는 데이블 개발팀 이성현입니다.제 메인 업무는 데이블 위젯의 스타일링과 관련 문제 해결입니다. 고객사 페이지를 분석해서 위젯 디자인을 만들고, 추천 결과가 안 나오는 경우에 문제를 수정하는 작업입니다. 특별한 기능이 필요한 위젯이 있으면 스크립트 작업도 하고요. 작업 도구는 회사 내부 시스템이 있어서 그 안에서 직접 작업하고, CSS로 작성합니다.위 업무가 메인이지만 다른 영역과 겹칠 때도 잦아서 회사에서 사용하는 여러 시스템을 만질 수 있어야 합니다. 도구는Html+CSS+js 외에 Node, gulp, react, angular angularJS, PHP, 젠킨스, AWS, MYSQL, git를 사용하고 있습니다.두 분 다 신입 개발자이신 만큼 회사를 선택하는 데 있어 신중했을 것 같아요.데이블을 선택한 이유는 무엇인가요?형주:  저는 대학원에서 빅데이터 처리관련 연구를 주로 했었어요. 졸업할 때쯤 제 전공과 관련된 회사에 지원했었고 많은 면접을 보았습니다. 여러 회사에서 면접을 봤지만 데이블에서 봤던 면접 경험이 만족스러웠고 특히 개발자들의 실력과 내공이 느껴져 신입으로서 많은 것을 배우고 싶어서 입사하게 되었습니다. 복지 또한 여느 알려진 회사들에 비해 부족하지 않아서 굉장히 만족하고 있습니다.성현: 처음 데이블에 호감을 느끼게 된 건 기술 중심 스타트업이라는 점이었습니다. 도전하는 자세, 유연한 사고, 성장 가능성, 복지 등 여러 가지 기준들이 있겠지만, 내가 재미를 느낄 수 있는가, 개발자로서의 성장 이 두 가지로 압축되었어요. 저 같은 경우에는 블로그를 보면서 회사 분위기를 대략 파악했던 것 같네요. 자유로운 분위기도 잘 느껴지고, 서로를 배려하면서 열심히 일하는 것을 간접적으로 경험할 수 있었어요. 면접 보러 갔을 때, 블로그에서 보던 사람들이 블로그 글과 비슷한 느낌으로 편하게 얘기하는 걸 보면서 마음을 굳히게 됐어요.데이블의 분위기는 어떤가요?형주: 분위기는 실제로 굉장히 수평적입니다. 서로 존댓말을 사용해서 존중받는 기분이 들어요.성현: 저는 데이블 오기 전에 잠시 다른 회사에 있었는데, 거기서는 과한 예절이나 눈치를 보는 분위기가 있었어요. 데이블은 수평적인 분위기이다 보니 스트레스 받지 않고 일에 집중할 수 있어 좋아요.형주: 저 같은 경우, 잠에 굉장히 민감한 편인데 출퇴근이 탄력적이어서 지각에 대한 스트레스가 없어서 좋아요. 그래서 저는 보통 9시 넘어서 일어나서 10시쯤 출근하고 7시쯤 퇴근하는 편입니다. 그리고 식대도 지원해주고 있어요~성현: 매일 4시쯤 회사가 지원하는 간식 타임이 있어요. 오랜 시간 앉아서 일하다 보면 집중력 떨어질 때 쯤 다 같이 모여 대화를 나누면서 간식을 같이 먹습니다. 만약 생일이 있으면 간식 타임과 더불어 생일 파티를 해요.형주: 간식과 음료수가 항상 냉장고에 갖춰져 있어서 먹을 것을 좋아하는 사람에게 최고인 것 같아요. 저는 살이 잘 안 찌는 체질인데 입사 후 2킬로가 쪘어요.성현: 거의 슬랙과 트렐로 위주로 업무를 하는데 간식 타임에는 여러 사람과 대화를 할 수 있어 좋습니다. 서로 대화도 같이하고, 같이 활동할 수 있는 시간을 마련하기 위해 ‘플레이 데이’ 도 2개월에 한 번씩 열고 있어요! 회사-집, 집-회사를 반복하다가 다 같이 뭔가를 하니 신선했어요. 업무 외적으로 같이 활동하면서 사람들과 친밀감을 느낄 수 있어서 좋았어요.데이블을 선택했던 이유 중 개발자로서 성장 가능성도 있었는데 이것은 어떻게 채워지고 있나요?성현: Dabler, Be The Expert 프로그램(이하 BTE 프로그램)이 있고 업무 관련 스터디도 활발히 진행하고 있어요.자세히 설명해주세요. 성현: BTE 프로그램의 경우 장기목표를 정하고 반기별로 관련 학습 계획을 세워요. 그 안에서 책도 사고 강의도 신청하고 하는 거지요. 스스로 목표를 잡고 자유롭게 계획을 세울 수 있어서 좋아요. 본인이 정말 원하는 것을 배울 수 있고, 필요한 자금은 회사가 지원하는 거죠. 단, 업무에 관련된 성장 계획이어야 한다는 가이드라인이 있어요.이 외에도 백엔드 개발자들과 함께 AWS 사용법을 주제로 스터디도 해요! 보통 프론트엔드를 담당하지만, 백엔드 영역도 경험할 수 있어요. 본인 스스로 영역을 넓히기 위해 공부하고 능력이 된다면 활동 범위가 굉장히 넓어져요. 회사 차원에서도 그런 시도를 장려해요. 빨리 성장해야겠다는 욕심이 있어요.형주: 전 회사에서 일주일에 2번 모여서 스터디도 하고 있고 MOOC 강의를 수강하거나 책을 사고 싶을 때 눈치 볼 필요 없이 신청하면 돼요. 그리고 반기별로 자기 개발을 잘한 직원에게 인센티브를 줘요.※BTE 프로그램이란?그럼 두 분은 BTE 프로그램을 통해 어떤 것들을 배우고 계시는가요?형주: 저는 Coursera에서 Recommender System 수업을 듣고 있어요. 아무래도 우리 회사의 핵심기술이 추천 기술이다 보니까 이쪽 분야를 깊게 공부해야겠다는 생각이 들었습니다.성현: 저는 웹을 능숙하게 다루고 싶어서 상반기에는 인프라, 자바스크립트, 웹 표준, node 등 기본을 다시 챙기고 하반기에는 웹 최신 기술을 공부하려고 해요.지금은 자바스크립트 관련 책 3권과 강의 2개를 신청해서 주로 퇴근 후 또는 주말에 듣고 있어요. 업무와 관련된 것을 공부하고 나서 코드를 작성하면 대충 넘어갔던 부분들이 보여요. 그 부분을 놓치지 않고 수정하고 개선하다 보면 예전보다 나은 결과물이 나오고 뭔가 아는 게 늘었구나! 하는 보람을 느낍니다.데이블에서 개발자로 일하며 느끼는 점형주: 저의 경우에는 신입 개발자 관점에서 경험 많은 개발자분의 피드백을 통해 노하우를 전수하는 점이 좋았어요. 그러면서 기존에 놓치고 있던 부분이나 실무와 이론 사이의 괴리감을 좁히는 경험이었습니다. 저도 학부, 대학원 시절 많은 코딩을 했지만 제가 작성한 코드가 잘 작성된 코드인지 잘 읽히는 코드인지는 스스로 공부하기 힘들었는데 이러한 피드백을 통해 성장함을 느꼈습니다.어려웠던 점은 우리 회사는 애드테크 회사이다 보니 광고 용어를 굉장히 많이 사용하는데 광고에 관해 얘기할 때 처음에는 광고 용어를 몰라 답답했었는데, 스터디를 만들어서 어려운 점을 조금은 해소할 수 있었어요.성현: 자기만 할 수 있으면 얼마든지 여러 프로젝트에 참여할 수 있는 문화가 좋아요. 예를 들면 저는 위젯 담당이지만, 위젯 업무 틈틈이 데이블 시스템 페이지 수정을 할 수도 있고 내부 DB를 이용해서 사업팀에게 도움이 되는 통계 페이지를 만들기도 해요. 얼마 전에는 커뮤니티에 데이블 추천 기능을 직접 넣는 프로젝트를 했습니다. 보통 추천 연동은 고객사가 하고 저는 위젯만 만들고 있었거든요. 이번에 고객사 입장에서 서버 쪽을 만져본 거죠.미래의 데이블은 어떤 모습일까요?형주, 성현: 세계 No. 1 콘텐츠 디스커버리 플랫폼! 경영진이 자기 개발 지원이나 복지에 신경을 많이 쓰고 있어서 계속 나아질 것 같아요.데이블의 개발자가 되기 위해 어떤 것들이 필요할까요?형주: 제가 생각하기에 시니어 개발자분들이 가장 중요하게 여기는 부분은 CS 분야의 기본기였던 것 같습니다. 이 기본기를 통해 자주 사용하는 툴이나 오픈 소스가 내부적으로 어떻게 구성되어 있고 동작하는지에 대한 공부를 하면 도움이 될 것 같습니다.성현: 저는 주도적인 자세요! 스스로 일하고 배우는 자세가 필요합니다. 다른 개발자와 소통하면서도 자기 일의 진행 관리나 조율은 스스로 해야 해요. 다음 일을 직접 찾아야 할 때도 있고요. 또 전부를 물어볼 수는 없으니 어느 정도 혼자 찾아 공부하는 습관도 필요해요. 그리고 자기가 지원하는 포지션에서 사용하는 핵심 기술 하나는 능숙하게 사용할 수 있어야 해요. #데이블 #팀원 #개발자 #개발팀 #개발 #팀원소개 #인터뷰 #기업문화
조회수 7344

Kafka 모니터링

Kafka 도입 이후에 점진적으로 모니터링을 개선해나간다. Kafka와 그 제반 환경에 대해 이해한만큼 모니터링을 구성하고 모니터링 시스템에서 피드백을 받아 다시 학습하고 그렇게 배운 것을 토대로 다시 모니터링을 구성한다. 그 과정을 따라 나가며 Kafka 를 어떻게 모니터링하면 좋을지 알아보자.프로세스 모니터링아무래도 가장 기초적이면서 중요한 지표는 Kafka 프로세스가 잘 살아 있는지 확인하는 것이다. 다섯 대로 구성한 클러스터라면 상시 Kafka 프로세스가 확인되어야 한다. 만약 Kubernetes의 StatefulSet으로 Kafka 클러스터를 구성한 경우라면 Kafka 프로세스 다섯과 프로세스 모두를 엮는 서비스, 그러니까 로드밸런서 하나를 포함해 총 여섯 개의 프로세스를 확인해야 한다. DataDog(통칭 멍멍이)을 이용해 모니터링하는 경우라면 다음과 같이 설정하면 된다.Monitoring Kafka ClusterKafka는 Zookeeper를 이용하므로 ZooKeeper 역시 동일하게 모니터링하면 된다.DataDog을 이용한 메트릭 모니터링`dd-agent는 Kafka 관련 메트릭을 Broker, Consumer, Producer 세 측면에서 수집한다.Monitoring Kafka with DatadogMonitoring Kafka performance metrics위의 두 문서가 Kafka 모니터링의 상세한 측면을 기술하는데 멍멍이를 이용하지 않더라도 꼭 한번 읽어볼만하다. 두 문서가 매우 훌륭하므로 이 글에서는 Kubernetes 환경에 초점을 맞춰 주목할 점만 살펴본다.Kubernetes 환경에서 멍멍이 에이전트는 보통 PetSet으로 구성한다. 말인즉 Kubernetes Worker 한 대마다 에이전트를 한 대씩 띄워서 Worker 안에서 작동하는 모든 도커 인스턴스의 메트릭을 수집한다. 일단 에이전트를 설정하고 나면 아래와 같이 Kafka 모니터링이 정상 작동하는지 확인하면 된다.kube exec -it dd-agent-17vjg -- /opt/datadog-agent/agent/agent.py info kafka ----- - instance #kafka-kafka-0.broker-9999 [OK] collected 46 metrics - instance #kafka-kafka-1.broker-9999 [OK] collected 46 metrics - instance #kafka-kafka-2.broker-9999 [OK] collected 46 metrics - Collected 138 metrics, 0 events & 0 service checks Emitters ======== - http_emitter [OK]Broker의 경우는 설정하기가 비교적 쉽다. Kubernetes에서 Kafka 같은 Stateful cluster는 StatefulSet으로 구성하게 되는데 이때 호스트 주소가 kafka-0, kafka-1 같이 예측 가능한 이름으로 정해지기 때문에 kafka.yaml을 미리 작성해두기 쉽다.instances: - host: kafka-0.broker port: 9999 # This is the JMX port on which Kafka exposes its metrics (usually 9999) - host: kafka-1.broker port: 9999Producer와 Consumer 모니터링은 이와는 다르다. 구현하기 나름이지만 Producer 또는 Consumer가 되는 응용프로그램은 Stateless cluster일 때가 많고 그런 경우에는 Kubernetes에서 Deployment로 클러스터를 구성한다. 이때는 StatefulSet인 경우와 달리 호스트 주소가 worker-903266370-q3rcx와 같이 예측하기 힘들게 나오므로 에이전트에 미리 설정을 넣을 수가 없다. 상당히 까다로운 문제이다.Consumer 모니터링Kafka의 설계는 매우 단순하면서도 강력해서 감탄하곤 한다. 하지만 복잡한 문제를 단순하게 풀어냈다고 해서 이를 둘러싼 환경을 제대로 모니터링하는 것도 쉽다는 뜻은 아니다. 특히 Consumer groups이 제대로 제 몫을 하고 있는지 파악하기는 더 어렵다. Consumer group마다 모니터링 체계를 갖추자니 번거롭다. 게다가 그런 번거로움을 극복하더라도 Kafka에 문제가 있는 경우를 탐지하기는 여전히 어렵다. 예를 들어 Consumer에게 가야 할 메시지 중 5%가 실제로는 전달되지 않는다 하면 이를 Consumer가 알기는 어려울 것이다. 이 외에도 Consumer 측 모니터링이 엄청나게 까다로운 문제임은 Burrow: Kafka Consumer Monitoring Reinvented에서 잘 밝혔다.Burrow: Kafka Consumer Monitoring Reinvented에 등장하는 Burrow는 Kafka를 세상에 내놓은 LinkedIn 엔지니어링 팀이 개발한 Kafka 컨슈머 모니터링 도구이다. 커뮤니티에서는 대체로 현존하는 가장 뛰어난 모니터링 도구라고 인정하는 분위기이다. 그러니 다른 도구도 많지만 우선 Burrow로 모니터링을 강화하기로 한다.Burrow로 Consumer 모니터링하기Burrow는 Dockerize가 잘 되어 있기 때문에 사용하기 어렵지 않다. LinkedIn이 공식 도커 이미지까지 제공했더라면 더 좋겠으나 GitHub에 Dockerfile과 docker-compose.yml을 올려놓아서 도커를 잘 아는 사람이라면 큰 어려움 없이 바로 설정하고 설치할 수 있다. 컨테이너 환경의 관례대로 주요 설정을 환경변수로 미리 빼놨으면 더 좋았겠지만 …알람 받기Burrow는 문제가 생겼을 때 알람을 발송하는 기능이 있다. 위키에는 이메일 알람과 HTTP 알람(Webhook)을 어떻게 설정하는지 설명한다. 그런데 Burrow 소스코드를 살펴보면 문서화되지 않은 알람 기능도 있으니… 바로! Slack 알람을 제공한다. 아직 공식 문서가 없고 소스코드도 godoc 관례에 맞춰 설명해놓은 부분이 전혀 없기 때문에 소스코드를 읽거나 GitHub 이슈에서 논의된 내용을 토대로 설정해야 한다.[slacknotifier] enable=true url=https://hooks.slack.com/services/xxxx/xxxxxxxxxx group=local,critical-consumer-group group=local,other-consumer-group threshold=0 channel="#general" username=burrower interval=5 timeout=5 keepalive=30멍멍이로 메트릭을 꾸준히 수집하고 이슈가 생겼을 때 알람을 받고자 한다면 packetloop/datadog-agent-burrow를 이용하면 된다.This plugin will push the offsets for all topics (except the offsets_topic) and consumers for every kafka cluster it finds into Datadog as a metric.멍멍이 에이전트에 필요한 파일과 설정을 넣고 나면 아래와 같이 메트릭이 수집된다.kafka.topic.offsets 와 kafka.consumer.offsets 이렇게 두 개의 메트릭만 수집하지만 각 메트릭을 cluster, topic, consumer 세 개의 토픽으로 세분화하기 때문에 실제로는 꽤 다양한 지표를 멍멍이에서 확인하고 이용할 수 있다.알`람 설정하기앞서 살펴봤지만 프로세스 모니터링 등은 어렵지 않다. 클러스터에서 한대라도 빠지면 바로 알람을 받는다. 끝!하지만 그 외의 지표는 알람의 기준을 설정하기가 힘들다. 예를 들어 Burrow의 kafka.topic.offsets 값이 600이면 정상인가? 그렇다면 700은? 또는 400은? 도무지 감을 잡을 수가 없다. 이럴 때는 멍멍이가 제공하는 Outlier detection기능으로 알람을 걸면 쉽다. 이 기능은 쉽게 말해 평소와 다른 행동을 감지했을 때 알람을 보낸다. 그러므로 정상의 범위를 확실하게 모를 때 아주 유용하다.설정 자체는 DBSCAN 또는 MAD라는 알고리즘이 등장하는 것만 빼곤 여타의 모니터링과 다르지 않기 때문에 매우 쉽다.참고 문헌How to Monitor KafkaCollecting Kafka performance metricsOriginally published at Andromeda Rabbit.#데일리 #데일리호텔 #개발 #개발자 #개발팀 #인사이트 #기술스택 #스택소개 #Kafka
조회수 938

HyperCut으로 인물사진 필터를 만들었습니다

얼마전 하이퍼커넥트의 아이디어 제안 채널에서 나온 이야기입니다.mel 은 사업그룹의 터키지역 담당 팀에 있는 친구인데, 꾸준히 좋은 제안과 아이디어를 주는 훌륭한 동료입니다. 이번에는 최근 여러 스마트폰이나 사진 앱들에서 나타나기 시작한 인물사진 모드 를 아자르에서도 지원하는게 좋겠다는 제안이었습니다.스마트폰이 자체 기능으로 인물사진 필터를 제공하는 경우는 보통 듀얼 카메라를 사용해 인물 외의 배경을 흐릿하게 만들어 심도를 표현합니다. 하지만 모두가 듀얼 카메라를 탑재한 스마트폰을 쓰는 것은 아니기 때문에, 이런 인물사진 모드를 소프트웨어적으로 구현하는 앱들도 존재합니다. mel 이 보여준 링크의 인스타그램도 그렇게 구현했네요.인물사진 모드를 소프트웨어적으로 구현하려면, 영상에서 얼굴을 포함한 사람을 배경으로부터 정확히 분리해 내는 기술이 필요합니다. 그리고 사진을 찍을 때에 실시간으로 프리뷰를 보아야 할테니까 이것을 실시간으로 처리할 수 있을 정도의 성능도 필요하구요.하이퍼커넥트에서는 머신러닝, 특히 영상과 이미지를 다루는 분야에 대해 지속적으로 투자와 연구를 해 왔습니다. 영상에서 인물을 분리해내는 문제는 크게 Image Segmentation 의 범주에 속합니다. 좀 더 직접적으로 Portrait segmentation 이라고 부를 수도 있습니다. 이를 잘 하기 위해서 하이퍼커넥트에서는 자체적인 학습 데이터를 만드는 것부터 시작하여 기술 개발을 지속적으로 추진해 왔고, 그 결과 Machine Learning 팀에서 이미 실시간으로 얼굴과 배경을 분리해내는 - HyperCut - 이라는 기술을 확보한 상태입니다. 아직 실제 서비스에 탑재되진 않았지만 이미 하이퍼커넥트의 주요 서비스인 아자르의 개발 버전에서는 HyperCut을 응용한 여러가지 이펙트를 사용할 수가 있습니다. 그리고, 그 중에 인물사진 모드 필터도 이미 있습니다.mel 의 제안이 있던 날 오후 아이디어 제안 채널에 이런 답이 달렸습니다.모델이 되어 주신 분은 하이퍼커넥트의 CTO 인 ken 이네요. 아자르 개발 버전에서 HyperCut 을 응용한 인물사진모드 필터를 사용하고 찍은 사진입니다. 아자르의 저장하기 기능을 사용했더니 UI 없이 오른쪽 아래에 아자르 로고만 남게 되었네요. 아직 실서비스에는 포함되지 않았지만, 최적화와 튜닝 과정을 거쳐 조만간 많은 사용자들이 HyperCut 을 사용한 이펙트를 쓸 수 있게 될 예정입니다.#하이퍼커넥트 #개발 #개발자 #아이디어 #아이디에이션 #구체화 #협업 #팀워크 #팀플레이
조회수 1204

Google I/O 2018

안녕하세요, Hyper-X에서 AI Camera Picai를 개발 중인 Android 개발자, Trent 입니다. 저는 지난 5월 8일부터 5월 10일까지 JH 님, Evan 님과 함께 다녀온 Shoreline Amphitheatre 에서 열렸던 Google I/O 2018 에 대해서 전하려고 합니다. Google I/O는 Mountain View, California에서 매년 6월에 열리는 Developer Festival로서, Sundar Pichai의 Google Keynote를 시작으로 Google의 새로운 기술들과 프로덕트를 선보이는 Session들이 3일에 걸쳐 진행되었습니다. 놀라운 AI 기술의 발전이 돋보였던 올해의 행사였습니다.SessionsKeynoteSundar Pichai의 Keynote로 시작된 올해의 행사에선 AI 기술의 발전과 그 활용이 단연 돋보였습니다. Google Duplex 가 Keynote의 가장 큰 화제였는데요, Google Assistant가 직접 헤어샵이나 식당 같은 업체에 전화하여 예약을 수행해주는 기능입니다. ‘음…‘같은 소리들을 포함하며 매우 자연스럽게 종업원과 전화를 하는 모습을 보였는데요, 어려운 질문들도 척척 대답하는 모습이 놀라웠고, Google의 ML 기술에 놀라움을 금치 못했습니다.또한 Google의 독보적인 AI 기술은 Google의 기존 서비스들에도 큰 변화와 개선점들을 가져왔는데요, Gmail 의 Smart Compose 기능이 그 중 하나입니다. 이메일 작성 시 문장 전체를 AI가 autocorrect 해주는 기능인데요, 반복적인 이메일 업무를 획기적으로 줄일 수 있을 것으로 기대되었습니다. 역시 Google의 엄청난 양의 데이터를 통해 이뤄낸 기술로 보입니다. 그 외에도 Google News의 자동 뉴스 큐레이션 시스템, Google Lens를 활용한 Google Maps의 AR 기능 등으로 기존 서비스들에 큰 변화를 선도해가는 면모를 보였습니다.Android P는 Adaptive Battery, Adaptive Brightness, App Actions, App Slices 등의 새로운 AI 기반 기능들을 Android에 가져왔습니다. 배터리를 30% 절약하고, 밝기를 자동으로 조절해주며, 시간 및 행동에 따라 연관된 앱들을 추천해주는 등 전반적으로 Android가 매우 똑똑해지는 부분을 보여 줬습니다. 이런 직관적인 AI 를 활용한 API 를 활용하면, 앱 개발자가 효율적으로 자기 앱의 접근성을 높일 수 있을 것으로 보입니다.또한 Android P 는 소소한 UX 개선 점들과 더불어 스마트폰 중독 방지 기능들을 탑재했습니다. 서양에서는 과도한 스마트폰 사용이 많은 사회적 문제가 되고 있는데요, 이를 방지하기 위해 App들에서 보낸 시간을 트래킹하고, App 시간 제한을 스스로 설정한다던가, 핸드폰을 뒤집어서 중요한 연락처의 전화가 아니면 받지 않는 등의 기능을 탑재하였습니다.What’s new in AndroidAndroid App Bundle 이 소개되었습니다. 하나의 패키지를 Google Play에 업로드 함을 통해 Android 디바이스가 필요한 리소스만 다운받을 수 있게 해주는 시스템인데요, 이미 Twitter, LinkedIn 등의 어플리케이션에 적용되어 20% 가 넘는 APK 사이즈 개선을 이뤄냈다고 합니다. 저희 팀이 개발 중인 Picai에도 APK 사이즈 문제가 있는데, 이를 통해 해결 가능할 것이라 생각하고 큰 기대를 하는 중입니다. 차후 버전인 Android Studio 3.2 버전부터 지원합니다.Android Jetpack 이 소개되었습니다. Support Library, Architecture Components, KTX 등의 라이브러리를 통합한 모양새 인데요, 이와 함께 AndroidX 로의 패키지 명 변경이 이뤄지었습니다. 그 외에도 새로운 Navigation 라이브러리, WorkManager 라이브러리 등이 소개 되었습니다. Google의 새로운 Android 개발 Best Practice 제시라고 할 수 있겠습니다. Picai에서 이미 적극적으로 사용하던 기술들이라 큰 감흥은 없었는데요, Google이 직접 나서서 Android 개발자 에코시스템을 정리하려는 노력은 좋았습니다.또한 Kotlin의 전반적인 지원 확대와 다양한 라이브러리들에 대한 소식, Android Studio 의 많은 내부 변경 및 Energy Profiler, Google Assistant와 관련된 다양한 API 들 제공, Android P에 변경된 Background 카메라 및 마이크 권한 제한 및 ImageDecoder 등에 대한 뉴스 및 다양한 안드로이드 최적화에 관한 세션이 있었습니다. 특히 Android Testing 관련 세션이 매우 인상깊었는데요, 모든 Android 테스팅에 관련된 불편함을 해결해 줄걸로 기대했지만 아쉽게도 런칭이 아직 안됬는지, 컨퍼런스 밖에서는 자취를 찾을 수 없었습니다... And MoreFirebase ML Kit 및 TFLite(TensorFlow Lite) 에 대한 발표가 인상깊었습니다. 머신러닝에 대한 접근성을 높여 어떤 개발자라도 ML을 활용한 콘텐츠를 쉽게 만들게 할 수 있도록 노력하는 모습이 돋보였습니다. 컨퍼런스 후 팀원들과 함께 자세하게 검토를 해보았으며, 아직 여러가지 제약사항이 있어 적극적으로 쓰고 있진 않지만, 앞으로의 간편한 ML 활용에 대한 기대를 불러일으키는 세션들이었습니다.Google의 새로운 Cross-Platform Framework Flutter 에 대한 세션도 참가하였는데, 개발 난이도가 쉬워 보이고 좋은 애니메이션의 UI Component 들이 제공됨은 동의 함에도 기능 분리 적인 면에서 노력이 많이 필요하겠다는 생각이 들었습니다. Hyper-X의 여러 팀들에서 도입을 검토로 하고 있지만, 아직 실무에서 적용하기는 시기 상조로 보였습니다.Snapchat Camera API 에 대한 설명을 들었는데, 기기 및 유저 데이터 기반으로 두 버전의 Camera API 및 캡쳐 메커니즘을 전부 지원하는 백엔드를 세세히 설계한 부분이 매우 인상 깊었으며, 차후 Picai에 직접 적용해보고 싶다는 생각을 가지게 되었습니다. 특히 관련하여, Fragmentation이 심한 Android Camera의 Testing을 어떻게 진행하나 궁금하여 강연 후 연사에게 찾아가 여쭤보았는데요, 만족할 만한 수준의 대답은 아니었지만 향후 Picai를 개발 함에 있어 자신감을 가질 수 있게 하는 답변을 받았습니다.Office Hour개인적으로 Google I/O 참가하면서 기대했던 것은 Office Hour 인데요, Jake Wharton, Kotlin 개발팀, Flutter 팀, TFLite 팀 등을 직접 만나서 질문을 할 수 있었다는 것이 기대되었습니다. Kotlin 개발팀과 바람직한 Kotlin 코드 스타일(Effective Kotlin 유무) 및 Jetbrains가 지향하는 패러다임(FP vs OOP), Kotlin Native의 런칭 일정 및 Coroutine 후 추가 목표 피쳐 등에 대해 토의하였으며, Flutter 팀에게는 Dart 채택 이유와 Flutter가 적합한 어플리케이션 타입이 무엇이냐에 대해 물었고, TFLite 팀에게는 회사 동료의 ML에 관한 질문을 슬랙으로 전달하고 답변 받는 등 뜻깊은 시간을 보냈습니다. Google I/O TipsUber 사용법을 숙지하라Silicon Valley 답게 차를 렌트하지 않은 경우 Uber를 통해 대부분 이동하게 되는데, Shoreline Amphitheatre 근처에서는 주차가 금지되어서 특정한 Uber 존으로 이동하여 차를 잡아야 합니다. 이 위치를 인지 못하고 앱만 보면서 돌아다니게 되면 길을 잃기 쉬우니, 주의하여 미리 탑승 존을 인지하면 좋습니다. 특히 야간에는 사람이 몰려서, 주의하여야 합니다. 오히려 더 아래쪽으로 내려와서, Google Campus 내에서 잡는 게 좋을 수도 있습니다.또한 Uber 운전사한테 얻은 정보인데요, Ride-sharing을 하는 Uber 플랜을 사용하면 운전사들이 쉽게 취소한다고 하니, 조금 비싸더라도 개인으로 탑승하는 Uber 플랜을 사용하는 것이 좋다고 합니다.복장을 조심하라(?)캘리포니아는 6월에 더울때는 엄청 덥고, 추울때는 엄청 춥습니다. 특히 야외에서 오래 돌아다녀야 하기 때문에, 충분한 대비가 필수 입니다. 후디같은 옷을 입으시거나, 얇은 외투를 입는 등 충분히 준비해가면 좋습니다. 저는 행사장에서  CODE 가 젹혀진 후디를 구입해서, 매일 입고 다녔는데요, 매우 유용했습니다. 선크림 같은게 제공되긴 하지만, 그래도 제때 실내에서 휴식을 취하고 물을 많이 마시는 것이 좋습니다.마치며행사장을 돌아다니며 구글의 생태계에 푹 빠져 볼 수 있었던, 뜻깊은 경험이었습니다. 특히 그들이 곧 완성되고 릴리즈 된다고 자신하는 새로운 기능들은 상상하지 못했던 것들이라 놀라웠고, 이 시점에 직접 볼 수 있다는 것이 감사했습니다. Hyperconnect에서도 Mobile AI의 심화된 적용을 위해 많은 노력을 하고 있는데요, Azar 및 새로 시도하고 있는 Picai 같은 앱들을 통해 더 특별한 가치를 제공할 수 있도록 노력하고 있으니, 많은 기대 바랍니다!링크Android PApp BundleAndroid JetpackAndroidXML KitTFLiteFlutter#하이퍼커넥트 #개발자 #이벤트 #구글 #참여후기 #꿀팁 #인사이트 #이벤트참여 #미국 #캘리포니아
조회수 1726

Google I/O 2018: Firebase의 새로운 기능

멋진 서비스를 제공하기 위해 잘 만들어진 앱을 개발하는 것은 중요합니다. 하지만 출시 이후 앱 운영을 통해 사용자 Retention과 Engagement를 유지 및 증가시키는 것 또한 앱을 잘 개발하는 것 만큼이나 중요하고 많은 고민과 노력을 들여야합니다. 그런 관점에서 Firebase는 앱을 운영함에 있어서 고민할 법한 다양한 기능들을 적절히 잘 모아놓은 서비스인 것 같습니다.스타일쉐어에서도 Crashlytics, Remote Config, Analytics 등 Firebase에 포함된 서비스들을 잘 활용하고 있습니다. 그래서 Firebase에 개선 및 변경 사항이 있다면 항상 주의 깊게 살펴보고 있습니다.https://events.google.com/io/올해도 어김없이 Google I/O가 개최됐습니다. 역시나 흥미로운 주제들이 많았습니다만, 이번 글에서는 앞서 언급한 Firebase 에 추가된 새 기능을 다룬 ‘What’s new in Firebase’ 세션에 대해서 공유드리고자 합니다.세션에서 주요 골자는 다음 4 가지입니다.ML Kit 베타 시작Test Lab iOS 플랫폼 지원Performance Monitoring 개선Google Analytics 개선이 글에서는 이 4 가지 내용에 대해서 정리하도록 하겠습니다.ML Kit 베타아직까지 베타 버전이긴 합니다만 ML Kit 를 통해 Machine Learning 을 앱에서 쉽게 활용할 수 있다고 하니 Machine Learning 이 한층 가까워진 느낌입니다.ML Kit 는 Android, iOS 양 플랫폼 모두 지원합니다. 따라서 앱에서 Machine Learning 을 활용해 서비스를 제공해보고 싶다면, 양 플랫폼 모두 시도해볼 수 있겠네요.What’s new in Firebase (Google I/O ’18) SlideML Kit 은 기본 API 를 제공합니다. 이 API 들은 Machine Learning 에 대한 폭 넓은 배경지식이 없더라도 충분히 활용할 수 있기 때문에 저처럼 막막한 느낌이 드는 분들은 아래 기본 API 5가지를 사용해서 먼저 친해져보는 것도 좋겠네요.텍스트 추출얼굴 인식바코드 스캔이미지 라벨링렌드마크 인식ML Kit 은 on-device 와 cloud 에서 모두 동작하기 때문에 상황에 맞게 적절한 방식을 사용하면 된다고 합니다. 예를 들어 사진앱 처럼 네트워크 연결이 중요치 않은 서비스의 경우에는 on-device 를 통해 오프라인으로도 동작이 원활하게 만들 수 있겠네요.또한 Machine Learning 에 대한 배경 지식이 충분하다면 TensorFlow-Lite 모델을 통해 직접 원하는 학습을 시킬 수도 있습니다.ML Kit 은 Android, iOS 양 플랫폼 모두 사용 가능하며 기본으로 제공하는 5가지 이외에도 향후에 더 추가될 예정이라고 합니다. 추가될 기능들에 대해서 조금 더 일찍 테스터로서 경험해보고 싶다면 waiting list에 메일을 등록하면 됩니다.Test Lab iOS 플랫폼 지원Test Lab 은 다양한 디바이스를 모두 고려한 앱을 개발하기 어려운 Android 플랫폼의 특징을 보완하기 위한 서비스입니다. 주로 UI 테스팅과 관련된 기능들을 제공하며, 좀더 쉽고 편하게 UI 테스팅을 작성하고 다양한 디바이스에서 테스트할 수 있는 환경을 제공해줍니다.What’s new in Firebase (Google I/O ’18) Slide앱을 서비스 할 때 Android, iOS 어느 한 쪽 플랫폼만 개발하는 경우는 드문 것 같습니다. 그래서인지 Firebase 팀도 iOS 지원에 항상 신경을 쓰는 것 같은 인상을 받았는데, 이번 경우도 그런 느낌이 강하게 듭니다.이번에 추가된 iOS 용 Test Lab 을 활용한다면 출시 전 Android와 iOS 모두 동일한 기준으로 품질 상태를 확인하고 배포할 수 있는 환경을 갖출 수 도 있겠네요. iOS용 Test Lab 은 다음 달에 정식으로 선보일 예정입니다만, 이 기능 또한 일찍 테스터로 참여하고 싶다면 waiting list에 메일을 등록하면 됩니다.Performance Monitoring 개선Performance Monitoring 의 베타 기간이 끝나고 정식으로 서비스를 한다고 합니다. Crash-free 도 중요하지만 사용자 입장에서 고려해봤을 때 앱의 퍼포먼스도 놓치면 안되는 중요한 요소입니다. Performance Monitoring 은 이런 관점에서 인사이트를 얻을 수 있게 도와주는 서비스라고 합니다.What’s new in Firebase (Google I/O ’18) Slide세션에서 강요한 기능은 New Issues Feed 입니다. Performance Monitoring화면의 상단에서 확인할 수 있는 이 기능은 단순한 데이터를 나열하는 것이 아니라 자체적인 분석을 통해 가장 최근에 해결해야할 이슈를 제안합니다.What’s new in Firebase (Google I/O ’18) Slide이 외에도 디바이스에서 렌더링할 때나 네트워크 요청을 할 때의 이벤트들을 기록해서 퍼포먼스 저하 요소들을 보여줍니다. 덕분에 어떤 부분에서 퍼포먼스 저하가 가장 심한지 보다 쉽게 파악할 수 있다고 합니다.Performance Monitoring 은 별도 코드 없이 모든 페이지에서 자동으로 데이터를 수집하고 있으니 별도의 노력없이 인사이트를 얻을 수 있다는 점이 또 다른 장점입니다.Google Analytics 개선What’s new in Firebase (Google I/O ’18) SlideGoogle Analytics 에서 두드러지는 개선 점은 Project level reporting이 가능해졌다는 것 입니다. 플랫폼 별 사용자 특성이 있기는하지만 하나의 서비스 차원에서 병합해서 데이터를 보고싶은 경우가 종종 있는데, 그럴 때 마다 별도의 서버 처리를 통해 병합하는 과정이 번거로웠습니다. 하지만 이번 개선을 통해서 프로젝트 단위의 데이터 분석이 가능해진 덕분에 번거로움을 좀 덜어낼 수 있겠습니다.그리고 세션에서 언급하진 않았지만, Filter가 조금 더 유연해지고 세분화된다고 합니다.지금까지 ‘Google I/O 2018: What’s new in Firebase’ 세션 중 주요 내용만 간단하게 살펴봤습니다. Firebase 는 매년 발전을 거듭해가며 앱 운영의 통합 관리 서비스로서의 자리매김을 해나가는 중인 것 같습니다. 덕분에 직감에만 의존해서 앱의 방향을 정하던 예전에 비해 정량적 데이터에 기반을 두며 더 성공에 가깝게 한발짝 씩 다가갈 수 있는 것 같습니다.이번에 Firebase 에 새로 추가된 기능들을 조금씩 건드려보면서 우리 서비스에서 어떻게 활용하며 인사이트를 얻고, 서비스를 이용하는 사용자들에게 더 나은 서비스를 제공해 줄 수 있을까 고민해봐야겠습니다.#스타일쉐어 #개발자 #개발팀 #인사이트 #Firebase #경험공유 #일지 #후기
조회수 2461

타다 시스템 아키텍처 - VCNC Engineering Blog

2018년에는 VCNC에 큰 변화가 있었습니다. 오랫동안 비트윈 기반의 서비스들을 개발하고 운영했지만 2018년 10월에 기사 포함 렌터카 서비스를 포함한 종합 모빌리티 플랫폼인 타다를 기획하고 출시하였습니다. 변화가 많은 모빌리티 시장에서 신규 서비스를 성공적으로 출시하기 위해 많은 고민을 하였습니다. 이번 글에서는 타다의 시스템 구성과 이를 위해 사용한 여러 기술을 소개하면서, 타다 개발팀의 기술적 결정을 공유해보고자 합니다.타다에서 사용하는 기술들의 로고. 왼쪽부터 Kotlin, Spring Boot, Kubernetes, Terraform, gRPC, Redis.기존과 다른 선택비트윈의 경우 Netty를 이용해 인하우스 네트워크 라이브러리를 만들기도 하였고, 메인 데이터베이스로 NoSQL인 HBase를 사용하는 등 남들이 통상적으로 사용하지 않는 기술 스택을 선택한 경우가 많았습니다. 그 배경에는 나름대로 이유가 있었지만, 서비스 초기에는 안정성에 어려움을 겪기도 하였고 서버 배포 과정이 느리고 복잡하여 쉬운 길은 아니었습니다. 여러 문제를 해결하기 위해 Haeinsa 등 라이브러리와 소프트웨어를 직접 만들기도 하였습니다.타다는 이슈가 많은 모빌리티 시장을 타겟으로 하고 있기 때문에 Time to Market이 특히 중요했습니다. 개발하는 기간 동안 시장 상황에 따라 기능의 우선순위가 변하기도 하였습니다. 이에 따라 서비스를 빨리 출시하고 외부의 변화에 유연하게 대처할 수 있도록, 완성도 있게 만들어져 있는 프레임워크나 라이브러리를 선택하였고, AWS에서 이미 잘 관리되고 있는 서비스를 적극적으로 활용하였습니다.사용 중인 기술들Kotlin: Java는 불편한 점이 많지만, JVM에 대한 경험을 무시할 수는 없어 비교적 새로운 JVM 기반 언어인 Kotlin을 사용하기로 하였습니다. 다른 여러 JVM 기반의 대안 언어들이 있지만, Spring Boot에 쉽게 적용할 수 있고 커뮤니티에서 적극적으로 권장하고 있는 점 등 여러 이유로 Kotlin을 선택하게 되었습니다.Spring Boot: 널리 쓰는 웹 프레임워크이며 이미 지원하는 기능 또한 많기 때문에 보일러 플레이트 코드 작성을 줄이고 서비스 개발에 집중할 수 있습니다. SQS 메시지 처리, HTTP 요청 및 응답으로 Protocol Buffers 메시지 사용 등 프레임워크에서 제공하는 기능을 많이 활용하고 있습니다.Kubernetes: 컨테이너 오케스트레이션 플랫폼으로 배포 자동화와 스케일링 등 여러 가지 운영적인 편의성을 제공합니다. 처음에는 kops를 이용해 클러스터를 직접 띄웠지만, 지금은 EKS를 이용하고 있으며 직접 object를 만들기보다 helm을 이용하고 있습니다.gRPC: 실시간성이 중요한 차량 위치나 운행 상태 변화 등은 Streaming을 이용하여 전달하고 있습니다. 직접 개발할 수도 있었지만, 서비스 개발에 집중하고 앞으로의 관리 오버헤드를 줄이기 위해 gRPC를 이용하기로 하였습니다.Redis: 서버 간 메시징을 위해 Redis의 Pub/Sub 기능을 사용하고 있습니다. 메시지 브로커 기능을 제공하는 RabbitMQ, ActiveMQ, Kafka 등 여러 옵션이 있었지만, 개발을 시작하던 당시에는 Redis만이 ElastiCache를 이용하여 쉽게 띄우고 관리할 수 있어 Redis를 선택하게 되었습니다.Protocol Buffers: gRPC 뿐만 아니라 HTTP/2로 주고받는 메시지를 정의할 때도 이용하고 있습니다. 덕분에 따로 문서화 하지 않고 proto파일을 공유하여 더욱 명확하고 편리하게 API 명세를 공유할 수 있었습니다.Terraform: HCL을 이용해 인프라스트럭처 프로비저닝 및 관리를 편하게 해주는 도구입니다. AWS 서비스의 생성 및 관리를 콘솔에서 직접 하지 않고 Terraform을 이용하고 있습니다.사용 중인 AWS 서비스들AWS는 개발팀이 오랜 기간 사용하여 가장 익숙한 클라우드 플랫폼이기 때문에 큰 고민 없이 선택할 수 있었습니다.EKS: Kubernetes 클러스터의 마스터 노드들을 쉽게 띄우고 관리해주는 서비스입니다. 서울 리전에 EKS가 출시된 후에는 관리 오버헤드를 줄이기 위해 EKS로 옮겼습니다.ECR: 타다 서버를 배포할 때는 Docker Gradle Plugin을 통해 docker 이미지를 만들고 ECR에 푸시합니다. 그 후 helm 명령을 통해 Kubernetes에 배포합니다.SQS: 배차 요청을 처리하기 위해 SQS를 이용합니다. 배차 요청을 구현하는 방법에는 다양한 옵션이 있었지만 AWS 서비스를 최대한 활용하여 빠르게 개발할 수 있었습니다.RDS: 타다의 대부분 데이터는 Aurora에 저장하고 있습니다. RDS를 이용하면 DB의 배포와 관리가 쉬우며, Aurora는 MySQL과 호환될 뿐만 아니라 같은 비용이면 성능이 더 좋습니다.Kinesis: 실시간 차량 위치 정보 및 로그를 수집하기 위해 사용하고 있습니다. 다른 오픈소스 소프트웨어를 직접 이용하기보다는 AWS에서 제공하는 서비스를 최대한 이용하고 있습니다.Firehose: 비트윈에서는 KCL를 활용해 Acheron이라는 프로그램을 직접 만들어 로그들을 S3에 저장하였지만, 이제는 서울 리전에서 Firehose를 사용할 수 있으므로 큰 고민 없이 사용하기로 하였습니다.시스템 구성타다에서는 필요에 따라 서비스를 여러 종류로 분리하여 운영하고 있습니다. 일반적인 모바일 앱 API와 실시간 차량의 위치 정보를 바탕으로 사용자의 요청에 대해 적합한 차량을 배차하는 기능이 필요했습니다. 핵심적인 역할을 하는 일부 서비스와 시스템 구성에 대해 간단하게 소개합니다.라이더 앱: 아이폰은 Swift, 안드로이드는 Kotlin으로 작성하였으며 여러 오픈소스 라이브러리를 적극적으로 활용하였습니다. 서비스 특성상 RIBs라는 아키텍처를 사용하여 개발하였습니다.드라이버 앱: 아이폰과 안드로이드를 모두 지원하려면 기술적, UX적으로 고려해야 할 점들이 많고 불특정 다수의 유저를 대상으로 하는 앱도 아니었기 때문에 안드로이드 버전으로만 개발하게 되었습니다.서버: 모바일 앱의 요청을 대부분 처리하며 Spring Boot로 작성된 HTTP/2 API 서버입니다. Protocol Buffers로 정의된 메시지를 JSON 형태로 주고받습니다.gRPC 서버: 서버에서 발생하는 이벤트를 실시간으로 전달하기 위한 서버입니다. Redis Pub/Sub을 통해 받은 이벤트 메시지들을 클라이언트들에게 전달합니다.Dispatcher: 배차 요청을 처리하는 서버입니다. 주변 차들의 ETA 계산을 위해 외부 API를 이용하는데, Reactor를 이용해 비동기적, 동시적으로 요청하여 쓰레드 점유 없이 효율적으로 처리되도록 구현하였습니다.Tracker: 차량 위치 정보 수집 서버입니다. KCL를 이용해 위치 정보 레코드를 읽어 들여 TrackerDB에 기록합니다.Redis: 서비스 초기에는 차량의 최신 위치 등을 저장하기도 했지만, 지금은 주로 서버 간 메시징을 위해 Pub/Sub 기능을 이용하고 있습니다.DB: 운행 기록, 사용자 데이터 등 대부분 데이터를 기록합니다. 비트윈에서는 HBase를 이용했지만 타다의 경우 아직 절대적인 트래픽이 많지 않기 때문에 트랜잭션 등 다양한 편의 기능을 제공하는 RDB를 이용하고 있습니다.TrackerDB: 차량 운행 정보 및 차량의 최신 위치 등을 저장합니다. Aurora를 이용하며 대부분의 요청이 차량 위치 정보 업데이트이므로 안정성을 위해 별도의 인스턴스를 띄워 사용하고 있습니다.Kinesis Log Stream: 타다의 여러 서비스에서 로깅을 위해 이용합니다. Firehose를 통해 S3에 기록됩니다.Kinesis Tracker Stream: 드라이버의 실시간 위치 정보는 Kinesis를 통해 Tracker로 전달됩니다.서비스 플로우차량 위치 업데이트차량 위치 업데이트는 요금 계산, 차량 위치 제공 등 서비스에서 가장 많이 일어나는 요청입니다. 드라이버 앱에서 안드로이드 Foreground 서비스를 이용해 GPS 정보를 수집하고 일정 주기마다 서버로 현재 위치를 전송합니다. 이렇게 전송받은 GPS 위치 정보는 데이터 크기를 최소화하기 위해 Protocol Buffers로 직렬화되어 Kinesis 레코드로 만들어지게 됩니다. Tracker에서는 전달된 Kinesis 레코드를 읽어 간단한 처리를 한 후에 TrackerDB에 삽입합니다.서비스 초기에는 차량의 마지막 위치에 대한 정보만 Redis에 적었습니다. 그러나 차량의 이동 경로를 효율적으로 조회해야 할 일이 생겼는데, 당시 차량 이동 경로는 로그로만 저장되고 있었습니다. S3 Select나 Athena를 이용해 조회하는 방안도 고려했지만, 일단은 Aurora에 저장하기로 하였습니다. 당분간은 Aurora로도 충분했고 RDB를 쓰는 것이 가장 쉽고 편한 방법이었기 때문입니다.차량 배차차량 배차는 서비스의 가장 기본적인 기능으로 배차 요청에 가장 적절한 주변 차량을 할당하는 플로우입니다. 라이더 앱에서 유저가 배차를 요청하면 서버가 배차 요청 정보를 DB에 기록하고 배차 요청 메시지를 SQS 대기열에 집어넣습니다. Dispatcher가 배차를 처리하는 로직을 수행하여 차량이 매칭되면 드라이버 앱으로 이벤트가 전달됩니다.드라이버가 배차를 수락하면 서버로 수락 요청이 전송되고 서버에서는 DB의 배차 요청 상태를 수락 상태로 변경합니다. 배차 요청이 수락되었다는 이벤트는 결과적으로 gRPC 서버를 통해 해당 이벤트를 구독하고 있던 유저에게 전달됩니다.Dispatcher에서 배차를 처리하는 로직은 여러 옵션이 있었지만 가장 간단하고 효율적으로 개발하기 위해 SQS의 기능을 최대한 활용하였습니다. Dispatcher 수를 늘리는 것만으로도 처리량 확장이 가능하며 Dispatcher가 갑자기 종료되어도 한 대라도 살아있다면 결국에는 잘 처리가 됩니다. Dispatcher가 배차 요청을 받으면 다음과 같은 로직을 수행합니다. 종료 조건을 만족하지 않았다면 일정 시간 후 동일한 로직을 다시 반복합니다.배차가 가능한 상태라면 배차 로직을 수행합니다. 이동 경로와 교통정보를 고려하여 적합한 주변 차량을 찾습니다.만약 적합한 차량이 있다면 배차 요청을 해당 드라이버에게 할당되었다는 정보를 DB에 적고 배차 할당 이벤트를 전파합니다. 드라이버의 수락을 기다리기 위해 일정 시간 후 로직을 재시도합니다.만약 적합한 차량이 없다면 일정 시간 후에 로직을 재시도합니다.배차 요청이 드라이버의 수락을 기다려야 하거나 타임아웃이 남아있는 상태라면 적절한 시간 후 재시도합니다.배차 요청이 수락되어 완료된 상태거나 취소되었거나 타임아웃이 지난 상태라면 SQS에서 메시지를 삭제합니다.못다 한 이야기타다를 런칭하는 날, 기사 간담회에서 쏘카의 VCNC 인수 이후 짧은 기간 동안 타다를 만들 수 있었을 리 없으니, 실제 개발 기간은 어느 정도냐는 질문이 있었습니다. 짧은 기간 내 서비스를 성공적으로 런칭할 수 있었던 것은 상황에 맞는 올바른 기술적 선택들뿐만 아니라 훌륭한 팀원들이 있었기에 가능했던 일이었습니다. 타다는 개선해야 할 부분도 많고 앞으로 새로운 기술적 도전들이 많이 있을 것입니다.네 그렇습니다. 결론은 기술적 난제들을 고민하면서 좋은 팀과 서비스를 함께 만들고 키워나갈 좋은 분들을 기다리고 있다는 것입니다.

기업문화 엿볼 때, 더팀스

로그인

/