스토리 홈

인터뷰

피드

뉴스

조회수 1160

AWS Lambda + API Gateway로 API 만들어보자

Overview좋은 아침입니다. 오늘은 AWS Lambda와 API Gateway 이용하여 API를 만들어보겠습니다. 서버 구축부터 해야 하지만 이번 글에서 서버는 따로 필요 없습니다. 당황하셨나요? 괜찮습니다. 이 글을 보면 곧 이해가 될 겁니다. 우선 Lambda와 API Gateway부터 알아봅시다. Lambda는 서버를 프로비저닝하거나 관리하지 않고도 코드를 실행할 수 있게 해주는 컴퓨팅 서비스입니다. 브랜디 랩스에는 이미 이것을 활용한 예제가 많은데요. 아마 아래의 포스팅들을 보시면 도움이 될 겁니다.SQS + Lambda: 이상근 팀장님CodeStar + Lambda + SAM으로 테스트 환경 구축하기: 천보성 팀장님API 호출부터 결과 확인까지API Gateway는 규모에 상관없이 API 생성, 유지 관리, 모니터링과 보호를 할 수 있게 해주는 서비스입니다. 이 글에서는 API를 호출해 결과를 확인하는 걸 목표로 진행하겠습니다.최종 API 호출 URL* GET /v1/reviews/{review-no}/comments* POST /v1/reviews/{review-no}/comments AWS(Amazon Web Service) 가입 절차는 생략하겠습니다. 1.AWS 로그인 후 API Gateway 시작!AWS에서도 설명되어 있듯이 API gateway엔 이와 같은 장점이 있습니다.1. API 개발 간소화: 새로운 버전을 신속하게 반복하고, 테스트하고, 출시할 수 있습니다.2. 규모에 따른 성능: 백엔드 시스템에 대한 트래픽 관리하여 유동적으로 API 호출하여 성능을 높이는데 도움이 됩니다.3. SDK 생성: 사용자 지정 SDK를 만들어 애플리케이션에서 신속하게 API를 테스트하고 배포할 수 있습니다. 2.API 생성새 API로 엔드 포인트 유형을 지역으로 선택하여 생성하세요. 엔드 포인트 유형1. 지역 : 현재 리전에 배포2. 최적화된 에지 : CloudFront 네트워크에 배포3. 프라이빗 : VPC에서만 엑세스 가능3.최종 호출 url로 순차적으로 리소스 생성리소스 이름과 리소스 경로를 입력하고 리소스를 생성합니다.리소스는 호출할 수 있는 특정 URL입니다. 생성된 리소스로 /reviews 주소가 만들어졌습니다.다음은 /reviews 주소 뒤에 {review-no}를 생성합니다. 리소스 경로에 {} 가 포함되어 있으면 경로 파라미터를 나타냅니다.마지막 리소스를 생성하게 되면 위의 이미지와 같이 /reviews/{review-no}/comments 리소스가 생성되었습니다. 이제 메서드에 연결할 Lambda 함수를 먼저 생성하겠습니다.4.Lambda 함수 생성GET, POST 메서드에 연결할 각각의 Lambda 함수를 생성합니다.‘Hello from Lambda’ 문자열로 리턴되는 Lambda 함수가 생성되었습니다. 생성된 Lambda 함수를 API Gateway 메서드에 연결해보겠습니다.5.메서드 생성GET, POST 메서드를 생성합니다.메서드의 의미* POST : 새로 생성(Create)* GET : 조회(Read)* PUT : 수정(Update)* DELETE : 삭제(delete)* PATCH : 일부만 수정(Update) 새 메서드의 통합 유형을 Lambda 함수로 선택하고 기존에 생성한 함수명으로 입력한 다음 저장을 누릅니다.메서드 실행 화면입니다. 해당 메서드에 통합 요청할 Lambda 함수가 연결됩니다. 연결된 Lambda 함수를 눌러보겠습니다.왼쪽 목록 트리거 추가하는 부분에 API Gateway가 연결되었습니다. 그럼 이제 정상적으로 호출되는지 테스트해보겠습니다.테스트를 클릭하면 오른쪽에 요청에 대한 결과가 나옵니다. 조금 전에 연결했던 Lambda 함수에 ‘Hello from Lambda’ 값으로 출력됩니다. 이제 리소스로 추가한 경로 파라미터를 매핑하여 출력해보겠습니다.메서드 요청에서는 사용자에게 노출되는 API를 정의할 수 있습니다. 리소스로 경로 파라미터를 추가하게 되면 메서드 요청 -> 경로 요청 부분에 자동으로 추가되어 있습니다.통합 요청에서는 백엔드와의 통신 방식을 지정할 수 있습니다. 메서드 요청에서 보낸 URL 경로 부분을 매핑시켜야 합니다. 명명 규칙은 아래와 같습니다. method.request.{"path" | "querystring" | "header"}.{param_name}매핑 템플릿을 추가하여 수신된 요청을 변환하여 통합 백엔드로 보내야 합니다. 정의된 템플릿이 없기 때문에 매핑 템플릿을 추가한 후 메서드 요청 패스스루로 지정합니다. 그러면 클라이언트가 제공한 요청이 변환없이 통합 백엔드로 전달됩니다.클라이언트가 요청한 경로 파라미터 출력하도록 Lambda 함수를 수정합니다.이제 다시 테스트를 해보겠습니다. 경로에 값을 요청하여 응답 본문에 출력되는 걸 확인할 수 있습니다.6.API 배포스테이지 정보를 입력하고 배포를 클릭합니다.스테이지 상세 정보에 API 호출 주소가 생성됩니다. Postman으로 생성된 API주소를 입력하여 정상적으로 return 값을 확인합니다.Conclusion정말 긴 과정이었습니다. 지금까지 API Gateway를 이용하여 API 생성부터 배포까지 알아봤습니다. API Gateway를 사용하면 서버 없이 높은 확장성을 가진 백엔드 애플리케이션을 구축하고 운영할 수 있게 될 겁니다. 백엔드에 관심이 있는 개발자에게 이 글이 도움이 되길 바랍니다.글곽정섭 과장 | R&D 개발1팀kwakjs@brandi.co.kr브랜디, 오직 예쁜 옷만#브랜디 #개발자 #개발팀 #인사이트 #경험공유
조회수 2598

WHATAP Python APM 이야기...

백엔드 서비스로 Python을 사용한다면 만나게될 상황을보다 쉽게 해결하기 위한 와탭의 Python APM, 개발하게 된 이유입니다.파이썬은 배우기 쉽고, 어디서나 실행되는 언어라고 이야기되며, 인기도 높습니다. 생각보다 많은 곳에서 배울 수 있으며, 혼자 배우기도 좋습니다. 그런데, 이 규모가 확대되어서 스타트업의 경우에 Python을 사용하여 백엔드 서비스를 개발하는 경우를 찾는 것이 어렵지 않습니다. 또는, 수학적인 알고리즘이거나 ML(머신러닝)과 같은 영역이거나 블록체인등에서 Python을 사용하여 API geteway나 broker를 사용하는 경우에 한정한 상황을 고려하고 있습니다.Python으로 백엔드 서비스를 만들 때에는 성능과 설계 부분에 대해서 많은 걱정을 하게 됩니다. 이런 상황을 만나게되는 개발자는 여러가지 문제를 만나게 됩니다. 그 문제에 와탭은 집중합니다.!와탭은 백엔드 서비스를 Python으로 개발시에 만나게 되는 상황을 가장 최우선으로 생각하게 되었습니다.Python으로 '설계', '개발'되고 '테스트'된 후에 '배포'되는 상황에서 서비스의 불완전함과 속도상의 문제, 리소스의 불협화음등을 '유지보수'하는 단계를 '성능 튜닝'이라고 정의하고, 이를 고려한 상황을 보다 단순화하는 것이라고 생각하게 되었습니다. 이를 어떻게 처리하느냐가 와탭 Python의 핵심 가치라고 생각하였습니다.----- 이 부분은 Python korea 페이스북에서 '배권한'님이 지적하신 내용을 기반으로 일부 첨언되었습니다.----- python native 개발자들에게는 불필요한 설명에 해당됩니다.파이썬은 분명, 읽기 쉽고 사용하기 쉬운 것은 장점이며, 라즈베리파이 위에서 동작되는 기민함은 정말 매력적입니다. <- 원래 문장.(* 현재에는 jvm도 동작합니다. 하지만, 작고 기민하게 다양한 IoT 디바이스에서 폭넓게 활용되는 것은 파이썬의 장점은 분명하지 않나 합니다. 이 부분에 대한 지적이 있어서 첨언합니다. )내부 구성상 비동기식으로 쓰레딩이 아니라, 단일 이벤트 루프를 사용하는 비동기식 작성은 매우 효과적입니다. <- 원래 문장.(* 이 부분도 asyncio나 gevent등에 대한 이야기이고, CPython의 언어 구현상 GIL때문에 쓰레드가 비효율적이라는 이야기를 거론하고 싶었으나, 일반적으로 파이썬에 대한 언어를 사용할때에 대부분 사용하는 이유가 단일 이벤트 루프기반의 비동기식 작성이 매우 일반적으로 사용되기 때문에, 이렇게 서술되었습니다. 하지만, 이런 설명은 백엔드로 Python을 사용하는 경우에 대부분의 프레임웍들에서 처리되고 있기 때문에 서술이 불분명하다는 지적이 있었습니다. 당연, 백엔드 서비스를 개발할때에 사용되는 wsgi interface등에 맞추어서 서술되는 경우에는 이런 설명이 무의미합니다.다만, 이렇게 서술한 이유는 Java를 기반으로 APM이 개발되어졌기 때문에 이 부분에 대한 서술이나 설명이 필요하다고 생각한 저의 과도한 설명이 되겠습니다.이 부분은 Python Native개발자들에게는 불필요한 설명이 되겠습니다. 하지만, 백엔드 서비스를 개발하면서 만나게될 환경에서는 이 부분에 대한 이해가 어느정도 필요하다고 생각되어 서술된 내용이라고 생각해주시면 감사하겠습니다. )----------------------------------------------------------------------------------------------------------------------이 방식은 복잡한 자원 경쟁이나 교착상태를 발생하지 않게 되며, 기본 코딩과 유지보수를 정말 수월하게 만들어 줍니다. 그만큼 일관성이 높은 수학 알고리즘을 구현하는데 매우 적합합니다. 하지만, 냉정하게, 비즈니스 로직이나 분기가 많은 업무 로직에 적합한 언어는 아닙니다.하지만, 수학적 알고리즘 기반의 주요 모듈 위에 데이터베이스가 일부 필요하고, 웹서비스의 형태로 가동되는 구조라면 파이썬은 매우 훌륭한 선택이 되고 있으며, 생각보다 많이 사용됩니다.그런 이유 중의 하나는 파이썬의 멀티패러다임 구성과 같은 구성에서는 자바에서처럼 굳이 프린트를 위해서 객체지향 클래스를 만들 필요 없이 간단한 함수형 스타일도 가능하게 구성이 됩니다. ( 자바 8에서는 이런 함수 기능도 추가되었습니다. )단순한 구조와 방식 때문에 파이썬 개발은 요즘처럼 ML이나 AI 등의 기술적 요소들이 많이 사용되는 환경에서는 매우 효과적입니다. 백엔드 파이썬 개발이 많이 보이게 되는 이유이기도 하죠.또한, 파이썬 개발의 단점이라고 지적되던 문제들도 현재에는 실행 속도 문제는 사실상 큰 문제가 되지 않는 상황입니다. 일례로, 파이파이(PyPY)로 실행된 파이썬 코드는 웬만한 수준의 C 코드보다 빠르게 동작합니다.굳이 더 지적하자면, 모바일 컴퓨팅과 브라우저에 따른 웹 애플리케이션 클라이언트는 굳이 파이썬으로 작성할 필요성을 느끼지 못한다고 이야기하는 정도입니다.하지만, 이런 파이썬 개발에 가장 큰 문제가 있습니다.테스팅 없이는 동작하기 어렵고,실제 동작 환경에서만 등장하는 오류의 발생파이썬의 특성상 동적 입력 형태에 따르는 더 많은 테스팅을 필요로 하고 있으며, 실제 실행시간에만 나타나는 오류를 찾는 것이 가장 큰 문제가 있습니다. 이 부분은 수많은 파이썬 개발자들을 괴롭히고 있습니다.( 단편적으로 파이썬 개발환경이 매우 고도화되어있지 않으며, 파이썬으로 백엔드 서비스를 만들 것이라고 예측하지 못한 점도 있을 것입니다. 앞으로 파이썬 개발이 더 고도화 되기를 기원합니다. )이 가장 큰 문제를 잡기 위해서와탭은 집중하였습니다.파이썬 백엔드 개발 시의 문제 해결!물론, Python도 디버깅에 대한 지원 유틸리티가 존재합니다.pdb라는 파이썬 디버깅 모듈을 통해서 Step over/Step into, 중단점(breakpoint) 설정, 콜 스택 검사, 소스 리스팅, 변수 치환 등을 할 수 있습니다.‘Phthon -m pdb 파이썬 파일. py’의 형태로 디버그 동작 화면에서 세부적인 동작을 트레이스 해보는 방식을 사용하거나, pdb모듈을 import 한 후에 pdb.set_trace()를 중단하고 싶은 부분에 넣어서 사용하는 방식도 사용됩니다. 또한, 디버그 세션을 사용하는 방식이며, PDB를 사용하여 디버깅하는 방식들도 흔하게 사용됩니다.PyCharm, PTVS, Spyder 등의 IDE를 사용해서 디버깅을 하는 방법은 전통적인 개발환경과 동일하게 사용할 수 있습니다.하지만, 이 방식들은 백엔드 서비스에는 맞지 않게 되며 개발자들은 백엔드 서비스 동작시에 디버그 추적을 위한 로그를 거는 방식을 흔하게 사용하게 됩니다. ( 너무도 전통적인 방식이죠. )정말 백엔드로 파이썬을 사용하고 있다면, 오류 추적이나 동작 메커니즘을 추적한다는 것은 매우 귀찮고 번거로운 작업이 됩니다.만들어지는 파이썬의 모든 파일에 해당 로그를 넣었다가 빼었다가, 배포의 오류를 만나는 상황까지 매우 번거로운 작업들이 끊임없이 반복되게 됩니다. 이런 상황들을 추적하기 위한 APM의 추적 기능들을 찾게 됩니다.또한, Python의 특징상 수학 알고리즘으로 구성된 API 중개인의 형태를 취할 경우에 DB에 대한 접근을 위한 ORM에서의 추적과 외부 웹 호출들이 뒤섞이게 되면서 오류 추적은 매우 짜증스러운 단계로 진화되게 됩니다.Python으로 백엔드 개발을 하게 되면만나게 되는 매우 짜증스러운 상황이죠.그래서, 와탭의 Python APM은 이 문제에 집중하기 위해서 와탭 고유의 문제 해결 방식을 그대로  아키텍처로 적용하여서 개발시에 편하고 빠르게 성능을 추적할 수 있도록 제작되었습니다. Python 백엔드 개발을 위한 최선의 방향을 제시합니다.Python개발자는 와탭의 APM을 설치하면 매우 손쉽게 웹 트랜잭션의 단계, 에러 추적, 클래스 추적, DB의 형태 및 Slow Query추적, 외부 호출 메커니즘의 구성 등을 설치 이후부터 빠르게 추적할 수 있으며, 개발자의 실수이거나 다른 외부 호출의 문제, DB와의 관계 등을 빠르게 잡아낼 수 있습니다.에러를 추적하기 위한 로그를 동작한다던지, 실환경시에 배포를 다시 한다던가 하는 귀찮은 작업을 모두 제거하는 것뿐만 아니라, 매우 통계적으로 의미 있는 와탭의 트랜잭션 추적 메커니즘을 사용할 수 있게 됩니다.파이썬을 기반으로 백엔드를 구성하는 곳이라면,와탭 APM은 매우 의미 있는 결과를 도출할 수 있습니다.와탭 Python의 세부적인 기능을 조금 더 상세하게 설명드리겠습니다.가장 먼저, 실시간 트랜잭션 모니터링!5초 주기로 트랜잭션을 수집하는 와탭의 방식은 서버의 부하를 최소화하면서 가장 의미 있는 데이터들을 수집하고 데이터 기반으로 오류와 트랜잭션을 빠르게 추적할 수 있게 합니다.파이썬 개발 시의 동작성을 체크하기 위한 와탭만의 고유의 진행 중인 트랜잭션 실시간 모니터링 기능인 아크 이퀄라이져와 동작된 웹 트랜잭션의 종료시간을 기준으로 시각화하여 동작된 트랜잭션의 상황을 한눈에 파악할 수 있습니다.와탭 Python APM위의 그림을 보면, Active Transaction으로 불리는 원형( 아크 이퀄라이져라 함 )으로 실제 동작중인 트랜잭션의 개수와 동작속도 등을 체크할 수 있으며, Hitmap을 통해서 종료된 트랜잭션의 속도를 시각화하여 볼 수 있습니다. 이 두 개의 시각화 만으로도 느린 트랜잭션을 추적 관리할 수 있습니다.Python 트랜잭션 추적 및 분석개발자는 단지 APM을 동작시켰을 뿐이지만, postgreSQL 데이터베이스에 연결하고 SQL문장을 주고받는 부분들을 하나의 시각화된 관점으로 나열해서 확인할 수 있습니다.각각의 동작 시간을 추적하는 것은 물론이고, 이 내용은 ORM으로 매핑된 상태에서도 SQL의 동작 순서대로 시각화되기 때문에 순서가 꼬이거나 문제가 발생되는 부분들을 손쉽게 찾아볼 수 있게 합니다.이외에도 와탭 APM( Java, Node, PHP 등의 모든 APM)에 기본적으로 제공되는 트랜잭션 추적 모듈 이외에도 사용자가 원하는 모듈 추적에 대한 기능들을 플러그인 형태로 정의할 수 있습니다. 더 복잡한 추적을 위해서 와탭의 고유기능을 추가적을 확대 사용이 가능합니다.WHATAP_HOME 의 plugin.json파일에 적절한 내용을 수정하여 특정 모듈의 데이터를 추적할 수 있습니다. 특정 모듈의 데이터를 추적하거나, 사용자 별로 원하는 모듈을 추적할 수 있습니다.*사용 안내:•[module_name]: 추적하고자 하는 대상의 모듈 명. import 하는 모듈 명 이기도 하다.•[class_name]: 추적하고자 하는 대상의 클래스 명. 없다면 ‘’(empty string)으로 사용한다.•[def_name]: 추적하고자 하는 대상이다.•args_indexes: 추적하고자 하는 대상의 아규먼트 인덱스. 여러 개일 경우 , 로 구분한다.•kwargs: 추적하고자 하는 대상의 키워드 명. 여러 개일 경우 , 로 구분한다.Plugin 기능 사용위의 예제에서는 Plugin과 SQL update문장의 순차적인 실행,세부 Plugin 설정에서 사용자의 모듈명, 추적 클래스 명, 추적대상과 아규먼트 인덱스, 키워드 등을 추적할 수 있습니다.*사용 예:plugin.json{"[module_name]": {      "class_name": "[class_name]",      "def_name": "[def_name]",      "args_indexes": ", ",      "kwargs": ", "},"httplib2": {      "class_name": "Http",      "def_name": "request",      "args_indexes": "1",      "kwargs": "method"},"faker.providers.address": {      "class_name": "Provider",      "def_name": "street_address",      "args_indexes": "",      "kwargs": ""}}두 번째, 데이터베이스를 매핑한 ORM과 SQL의 순서와 속도, Slow Query!매우 당연하게 파이썬을 기반으로 백엔드 개발을 할 경우에 데이터베이스를 사용하게 되며, 이에 대한 Slow Query와 관련된 추적하는 것이 개발자에게 필요하게 됩니다. 향후, RDS기반을 사용하게 되면 Query추적은 대부분의 데이터베이스 처리에 기본이 될 것입니다.현재 지원되고 있는 mysql / postgresql에 대하여 SQL Query, Fetch Count, SQL Query수행 시간을 수집합니다.Python개발 시에 RDBMS(관계형 데이터베이스 관리 시스템)를 선택하면 거의 항상 ORM(객체 관계 매핑) 라이브러리를 함께 사용하게 됩니다.특히, 파이썬에서는 이런 ORM라이브러리가 다양하고 사용하기 쉽기 때문에, 매우 흔하게 사용하고 있습니다.ORM의 장점으로는 쿼리를 생성하거나 추상화하는 대신, 데이터 베이스 시스템에 대한 접근을 쉽게 할 수 있는 장점이 있습니다. 다만, 이러한 장점 때문에 실제 만들어진 쿼리가 어떠하고 쿼리 수행 시간이 얼마나 걸리는지에 대해서는 추적이 어렵다는 점이 있습니다.이처럼, 파이썬의 특징상 ORM(객체 관계 매핑) 라이브러리를 사용할 경우에 추상화된 쿼리가 어떻게 동작하고, 실제 어떤 상황으로 발생 및 동작되는지를 한눈에 파악할 수 있게 합니다.ORM으로 매핑된 SQL의 순차적인 동작 상태 파악그리고, 세 번째. 외부 호출 추적파이썬 백엔드 개발 시에 사용되는 외부 호출(request/httplib2)등의 외부 호출과 관련된 호출 정보 및 수행 시간 등을 수집합니다.외부 호출을 사용하는 경우에는 각각의 호출에 대한 지연시간에 대해서 세밀하게 추적해야 하므로, 이와 관련된 에러와 지연시간 등을 추적하는 것은 매우 중요한 개발 시의 관점입니다.Python 외부 호출 추적마지막 중요 관점 네 번째는, 튜닝을 위한 다양한 프로파일 데이터의 제공을 이야기할 수 있습니다.와탭의 파이썬 에이전트는 위에서 나열되는 성능 저하를 위한 요소들의 전체적인 관점에서 수집하고 그 데이터들을 시각화할 수 있습니다.데이터베이스를 효율적으로 사용하고 있는지, 사용하는 ORM툴과 매핑과의 관계, 쿼리와 쿼리의 수행 시간과 상태에 대한 추적, 외부 호출시간과 각각의 지연되는 외부 호출과의 관계와 순서 등이 전체적으로 백엔드로 개발되는 Python의 성능 튜닝에 영향을 주게 되는 것이죠.그 이외에도 전체적으로 백엔드 서비스의 TPS, 응답 시간, 서비스 리소스 사용량과 어떤 에러가 발생되고 있는지를 알 수 있습니다.서비스 사용자가 사용하는 상세한 정보들을 프로파 일릉 함으로써 이들의 연관관계를 한분에 파악하게 해줍니다. 와탭에서 관리되는 프로파일 정보는 - 트랜잭션, SQL Query, 외부 HTTP호출, Error, User Agent, Client IP 등의 상관관계들입니다.그리고, 덤으로... Python이 설치 운영되는 전체적인 패키지의 버전을 한눈에 파악할 수 있는 것은 너무도 당연한 기능입니다.설치된 Python 패키지 확인그리고, 와탭의 DNA를 그대로 이어받은 APM이기 때문에, 기본적인 APM의 기능들을 대부분 담고 있습니다. 처음 와탭 APM을 접하시는 분들을 위해서 간단하게 설명드리면 다음과 같습니다.CUBE 메뉴는 시간을 기점으로 와탭 Python APM이 설치된 이후부터 현재까지의 모든 상황들을 추적 관찰할 수 있습니다. 주말에 오류 간 난 상황이라던지, 특정 오류의 발생 시점을 알고 있는 경우에 빠르게 해당 문제가 발생한 위치나 SQL 등을 추적할 수 있습니다.상세한 일간, 주간, 월간 리포트나 MAU 등을 추적할 수 있는 리포트 기능들은 와탭만이 가지고 있는 장점에 해당됩니다.Python으로 백엔드 웹서비스를 개발하고 계시다면, WHATAP Python APM은 개발과 운용을 매우 풍요롭고 빠르게 해줍니다.파이썬 백엔드 서비스 개발자라면 와탭 APM!
조회수 1724

리액트 네이티브의 장단점

Realm이 주최한 안드로이드 개발자 오픈토크 행사에서 발표한 동영상입니다. 주제는 [리액트 네이티브로 안드로이드 앱 개발하기의 장단점]입니다. 예전부터 글로 한 번 정리해서 공유하려고 했었는데 발표 기회 덕분에 그럴 필요가 없게 되었네요. 아직 국내에서 리액트 네이티브로 실서비스를 개발하는 경우는 거의 없는 것 같은데 많은 분들이 염두에는 두고 계신지 500회 이상 페이스북에 공유되었습니다. 아래 링크는 Realm 블로그에서 영상과 함께 정리해 주신 내용이고 그 아래는 바로 보실 수 있도록 유튜브 동영상을 첨부했습니다https://realm.io/kr/news/react-native-android-pros-cons/https://www.youtube.com/watch?v=v3_3ZwcHy5Y<iframe width="700.000000" height="393.750000" src="//www.youtube.com/embed/v3_3ZwcHy5Y" frameborder="0" allowfullscreen="">마지막 질문과 답변에 대해 집에 와서 좀 더 고민해 봤습니다. 페이스북 내부적으로 리액트 네이티브를 굉장히 잘 활용하면서 각 플랫폼이 코드를 공유하는 비율이 80%가 되는데, 저희 회사가 그렇게 할 수 있을까, 다른 스타트업들이 그렇게 할 수 있을까, 그렇게 하는 것이 바람직한가를 곰곰이 생각해 봤습니다. 우선 페이스북이 리액트를 사용했을 때의 장점은 '생산성' 보다는 수많은 플랫폼 간의 '일관성'이라는 생각이 들었습니다. 페이스북의 복잡하고 다양한 기능들이 OS별로 브라우저별로 디바이스별로 일관되게 적용되도록 하려면 각 그룹의 개발 인력이 밀접하게 공조를 하거나 더 나아가서는 한 그룹의 개발 인력이 꽤 많은 코어 펑션들을 한 번 만들어 공통적으로 사용하는 것이 유리하다는 것이죠. iOS에서 동작하는 기능이 Android와 PC웹과 모바일 웹에서 동일하게 동작하는 것을 보장하기 위해 크로스 플랫폼은 좋은 전략입니다. 생산 속도 측면의 생산성보다는 중복 제거를 통한 안정성을 획득할 수 있습니다. 중복 제거의 장점은 페이스북처럼 협업하는 개발자가 많아 커뮤니케이션 비용이 높을 때 더욱 빛을 발하죠. 그리고 대규모 유저 베이스에서는 중복 제거가 플랫폼 간의 제품의 일관성과 안정성도 높여줄 수 있습니다.페이스북은 외부 SDK를 사용할 필요가 없어 제가 언급했던 리액트 네이티브의 단점 중 하나가 사라집니다. 페이스북이 트위터나 애드몹, 구글 애널리틱스 등의 외부 SDK를 탑재할 이유가 없으니까요. 그리고 리액트 네이티브를 주도해서 만들어가는 입장이기 때문에 퍼포먼스 이슈들은 우회하거나 크리티컬 한 경우는 장기적으로 고쳐가면서 사용할 수 있습니다.반면 한 명의 개발자 또는 플랫폼 별로 한 두 명의 개발자가 있는 저희 회사나 소규모 기업에서 리액트 네이티브를 검토하고 있는 단계라면, 빠른 개발 또는 한 번 개발해서 여러 플랫폼에 '금방' 론칭할 수 있다는 장점을 염두에 두고 있을 가능성이 큽니다. 아직 론칭 전이고 (유저 베이스가 없어 안정성 이슈가 당장 크지 않고) 개발자 간 커뮤니케이션 비용이나 중복 제거가 덜 중요한 이슈이며(수백 명의 개발자가 있는 것과 상대적으로) SNS 로그인, 광고, 분석 등의 도구를 자체 개발할 여유와 이유가 없는 상황인 것이죠.정리하자면 소규모 기업이 리액트 네이티브를 고려하고 있는 이유와 환경, 그리고페이스북이 내부적으로 리액트 네이티브를 쓰고 있는 이유와 환경이 서로 다름을 염두에 두고 판단하면 좋을 것 같습니다. 이번 발표에서는 크로스 플랫폼으로써 리액트 네이티브에 대해서만 다루었는데요, 5년 전에는 Titanium(http://www.appcelerator.com/)으로 모바일 서비스를 크로스 플랫폼으로 개발했었고, 리액트 네이티브와 유사한 개념의 Fuse(https://www.fusetools.com/)와 네이티브에 가까운 하이브리드를 추구하는 ionic(http://ionicframework.com/) 등도 최근에 살펴보았는데 모두 비슷한 단점이 있다고 볼 수 있습니다.복잡해지면 네이티브와 비교해 느려진다는 것, 약간의 동작 이상(쉽게 고치기 어려운), 그리고 외부 SDK 탑재의 제약 등입니다. 이 것들과 씨름하다 보면 여러 플랫폼에 동시에 출시할 수 있다는 '빠름'의 장점이 많이 사라지게 됩니다. Titanium만 해도 Android와 iOS가 초창기여서 네이티브 개발이 효과적이지 못했을 때 그 대안으로 각광받았었습니다. 많은 개발자가 Titanium이나 Phonegap 등으로 몰렸고 써드파티 SDK들도 Titanium을 꽤 지원했고 플러그인 마켓도 활성화됐었습니다. 도큐먼트도 풍성했죠.현재의 Unity가 누리는 인기와 비슷한 측면이 있었습니다. 게임 솔루션 업체들은 모두 Unity SDK를 지원하고 게임 개발자들은 네이티브 코드를 거의 건드리지 않고 Unity 툴 안에서 개발하며 Unity의 마켓에서 에셋을 거래할 수 있죠. 생태계가 그 정도로 커지고 이 안에서 모든 것이 해결이 가능해진다면 리액트 네이티브가 지금보다 더 강력한 대안이 될 수 있을 것 같습니다. 반면 자바스크립트 개발자들, 특히 React의 단순함과 생산성에 매력을 느껴본 클라이언트 개발자들이라면 리액트 네이티브는 지금으로써도 가장 좋은, 또는 유일한 전략입니다. 네이티브와 비교하면 아쉽지만 하이브리드와 비교하면 월등한 대안이기 때문이죠. react-native의 패키지들을 살펴보면 상당수가 UI 관련 javascript only 라이브러리 들입니다. 상당수가 네이티브와 관계없는 자바스크립트 개발자들의 작품이라고 보입니다. 원론적이지만, 역시 자신의 상황과 목적이 맞게 도입 여부를 판단해야겠다고 결론 내릴 수 있을 것 같습니다. 
조회수 3894

Eclipse Memory Analyzer 소개

안드로이드 개발을 하다보면 종종 OutOfMemory(OOM)에러를 만나게 됩니다. 이전에 올렸던 포스팅에서도 이 문제로 고생을 했는데요, 메모리 누수 관련 문제는 로직 에러와는 달라서 찾기가 매우 난감한 경우가 많습니다. 이러한 메모리 누수 관련 문제를 해결하기 위한 검사 기능을 제공하는 무료 툴이 있습니다. 바로 Eclipse MAT(Memory Analyzer)(MAT)입니다.Eclipse MATMAT은 사용자로 하여금 힙 메모리의 상황을 파악하게 해주어 메모리 누수 현상과 필요없는 메모리 할당을 감지할 수 있도록 도와줍니다. 또한 자동으로 보고서를 작성하여 어떤 객체들이 메모리 누수를 일으키는지에 대한 추측을 해주는 기능을 제공합니다. MAT은 Eclipse 플러그인이기 때문에 사용하려면 Eclipse가 깔려 있어야 합니다. MAT을 설치하려면 MAT 다운로드 페이지에서 자신의 Eclipse버전에 맞는 파일을 받으시면 됩니다.How to use MATMAT을 설치하였다면 Eclipse화면에서 MAT관련 탭이 뜹니다. 탭을 클릭 하고File -> Open Heap Dump 를 누르면 힙 상황이 기록 된 hprof파일을 읽어올 수 있습니다.탭이 뜨지 않는다면Window -> Open Perspective -> Other에서 Memory Analysis 를 누르면 탭이 뜨는 것을 볼 수 있습니다.hprof 파일을 읽어오면 분석을 시작하고 결과를 Overview 화면에 보여줍니다.파이 차트의 각 부분에 마우스를 갖다 대면 옆의 Inspector 화면에 해당 객체의 정보를 보여주는 것을 볼 수 있습니다.InspectorInspector 창에서는 선택된 객체의 내용을 볼 수 있습니다. 해당 객체의 클래스명과 패키지 명 그리고 해당 객체가 가지고 있었던 변수의 내용을 살펴볼 수 있습니다.유용한 기능들MAT에서 가장 중요하게 살펴볼 기능이라고 한다면 Leak suspoect report와 Dominator tree라고 볼 수 있습니다. Leak suspect와 Dominator tree 둘 다 가장 메모리를 많이 차지하고 있는 객체에 대한 정보를 제공합니다.Leak suspectLeak suspect는 가장 큰 용량을 차지하고 있는 객체들을 좀 더 세분된 파이 도표로 보여줍니다. Problem suspect 1을 보면 현재 이 스레드 객체의 크기가 전체 힙 메모리의 크기 중 19.73%를 점유하고 있다는 것을 알 수 있습니다. 전체의 20% 가까이 차지하고 있다는 것은 이 객체를 OOM의 범인(?)이라고 생각할 근거가 됩니다. 해당 객체에 대한 더 자세한 정보를 얻고 싶다면 Details을 클릭하면 됩니다.Dominator treeDominator tree를 띄우면 현재 덤프 된 매모리 스냅 샷 중 가장 큰 용량을 차지하고 있는 객체 순으로 정렬하여 보여줍니다. Leak suspect와 비슷해 보이지만 더 구체적인 정보를 제공한다는 점이 다릅니다. 따라서 Leak suspect로 현 상황에 대한 힌트를 얻은 후 Dominator tree에서 디테일하게 살펴보는 것이 시간을 절약하는 방법입니다.상위에 있는 몇몇 객체들이 가장 의심 되는 객체들이라고 볼 수 있겠습니다. 왼쪽의 화살표를 클릭함으로써 그 객체가 참조하고 있는 다른 객체들에 대한 정보들을 볼 수 있습니다. 각 객체를 클릭하면 옆에 Inspect창의 내용이 달라지는 것을 볼 수 있습니다.실제 이 스냅 샷은 이전 포스팅의 문제를 해결하려고 떠놓은 스냅 샷인데요, 이 결과를 보고 많은 메모리가 네트워크를 통해 받아오는 스트림을 처리하고 문자열로 가공하는데에 낭비되고 있다는 생각이 들어 다른 방법으로 우회하는 방법을 썼고 결과적으로 문제를 해결 할 수 있었습니다.Android에서 MAT사용법먼저 안드로이드 기기에서 힙 덤프를 수행하여 hprof파일을 생성해야 합니다. hprof파일을 생성하기 위해서 간단하게 취할 수 있는 2가지 방법이 있습니다.1. DDMS를 이용한 추출Eclipse의 DDMS를 이용하여 힙 덤프를 추출할 수 있습니다. 아 방법을 쓰려면 앱의 메니페스트 파일에 WRITE_EXTERNAL_STORAGE 권한을 부여해야 하며, sdcard에 쓸 수 있는 권한이 있어야 합니다. 이 방법을 통해 sdcard경로에 앱 패키지명의 hprof파일이 생성됩니다.2. Heap dump method안드로이드 API에서 제공하는 메서드 중에 hprof파일을 생성하는 메서드인 dumpHprofData가 있습니다. 이 메서드는 Debug 클래스의 메서드인 것을 알 수 있는데, 이 Debug 클래스에는 앱의 상태를 점검할 수 있는 여러 유용한 메서드가 있으므로 나중에 필요하면 사용할 수 있도록 익혀두면 좋습니다.Android hporf 파일 변환앞서 설명한 방법을 적용하여 hprof파일을 추출하였어도 안드로이드에서 추출한 hprof파일은 MAT에서 받아들이는 일반적인 hprof포맷과 다르기 때문에 먼저 변환하는 과정이 필요합니다. 이러한 기능을 제공하는 것이 기본 SDK에 포함된 hprof-conv유틸입니다. 이 유틸은 SDK폴더 내의 tools폴더 안에 있는데 사용하려면 콘솔에서$ hprof-conv <안드로이드용 hprof 파일> <변환할 hprof 파일> 를 치시면 됩니다. 이제 변환된 파일을 MAT에서 열면 분석을 하실 수 있습니다.More tipEclipse Memory Analyser (MAT) - TutorialMemory Analyzer BlogJava Performance blog상기의 사이트들은 MAT과 Java의 메모리 처리에 관련된 내용을 포스팅한 사이트들입니다. 한 번 들러보면 좋은 정보를 얻을 수 있을것입니다.#스포카 #꿀팁 #개발 #개발자 #스킬스택 #스택소개 #인사이트
조회수 1547

공용 계정용 OTP 관리방법

제대로 된 기업용 서비스라면 의례 다중 계정과 권한 제어 기능을 함께 제공하기 마련이다. 그래서 공용 계정을 굳이 만들 이유가 하나도 없다. 하지만 일부 서비스(그리고 대부분의 한국의 기업 서비스)는 단일 계정만 지원하는데다 AWS 같은 서비스도 root 계정이 따로 있어서 계정 관리 이슈가 불거지기 마련이다. 계정 아이디와 암호의 경우는 LastPass 같은 기업용 계정 관리 서비스를 사용하거나 팀 공용 계정 비밀번호 관리하기에서 소개된 방식과 같이 약간은 불편하지만 비용이 들지 않는 수단을 도입하여 관리하면 된다. 그런데 MFA 또는 2FA(2-Step Verification)라고도 부르는 OTP로 계정을 보호할 때는 OTP 정보를 공유하기가 쉽지 않다. 일반적으로 MFA 계정은 Google Authenticator 같은 앱을 설치해 관리한다. OTP 정보와 계정 암호를 한 계정에서 관리하지 않아야 한쪽이 노출되어도 보안을 유지할 수 있기 때문이다. 문제는 Google Authenticator와 Authy 같은 도구를 특정 휴대폰에 설치하면 여러 사람이 OTP 정보를 공유하기 힘들다는 것이다. 그래서 몇가지 솔루션을 찾아보았는데 “이거다!” 싶은 건 없어도 gauth라는 명령줄 기반 도구에 안착하게 되었다.gauth.csv라는 파일에 OTP 정보를 아래와 같이 입력하고AWS: ABCDEFGHIJKLMNOPQRSTUVWXYZ234567ABCDEFGHIJKLMNOPQRSTUVWXYZ234567 Airbnb:abcd efgh ijkl mnop Google:a2b3c4d5e6f7g8h9 Github:234567qrstuvwxyzgauth를 실행하면 아래와 같이 OTP 토큰을 확인할 수 있다.$ gauth prev curr next AWS 315306 135387 483601 Airbnb 563728 339206 904549 Google 453564 477615 356846 Github 911264 548790 784099 [======= ]이제 gauth.csv 파일만 라스트패스 등으로 제한된 사용자에게 안전하게 공유하면 된다.개선 사항DailyHotel/gauth는 pcarrier/gauth를 개선한 tuxmartin/gauth를 Docker 이미지로 감쌌다. 그래서 Golang 개발환경을 갖추고 소스코드를 빌드하지 않아도 바로 사용할 수 있다. 자세한 사용법은 README 문서에 적어두었다.#데일리 #데일리호텔 #개발 #개발자 #개발팀 #인사이트 #꿀팁
조회수 2091

리디북스 서버 스택 소개

2대의 서버로 시작한 리디북스는 각 기능의 요구사항에 최적인 솔루션들을 채용하고, 고가용성(High Availability)을 지향하면서 매우 복잡하고 다양한 구성으로 변모해왔습니다. 이 글에서는 리디북스가 어떤 스택에서 서비스를 제공하고 있는지 간략히 소개하려고 합니다. 각 스택의 선택 이유나 문제에 부딪히며 배운 노하우 등은 차차 포스팅하겠습니다.대략적인 구조리디북스 백엔드 구조도로드 밸런싱로드 밸런싱은 소프트웨어 로드 밸런서인 HAProxy를 이용하고 있습니다. HAProxy는 L4, L7 스위치의 기능 및 로드 밸런싱을 제공하고 구성 역시 매우 간편합니다. 리디북스는 고가용성을 위해 Active - StandBy 서버 한 쌍이 가상 IP를 공유하고, keepalived를 통해 서로의 상태를 확인하며 자동 failover 됩니다. 각 서버군이 사용하는 네트워크 트래픽에 따라 스위치와 연결되어 있는 네트워크의 속도가 다른데, 이를 효율적으로 사용하기 위해 HAProxy 서버 쌍을 2개 구성하여 DNS를 통해 HAProxy로 들어오는 트래픽도 분산하는 방식으로 네트워크 효율화를 이루었습니다.웹 서버Ubuntu 14.04 LTS 기반에 웹서버로는 Apache, Nginx를 사용하고 있습니다. 서점 용 웹 서버, 정적 파일 서버(CSS, JS 등), 통계용 서버, 책 파일에 DRM을 씌워 전송하는 다운로드 서버 등 여러 개의 웹 서버 그룹을 나누어 관리하는데, 각 서버가 하는 역할이나 테스트를 통해 확인한 병목 지점을 고려해 웹서버를 채택합니다.API 서버리디북스는 서점이나 앱에서 이용하는 수많은 API가 존재하는데 종류에 따라서는 초당 수만 개의 호출이 발생하는 경우도 있습니다. 이러한 트래픽을 감당하기 위해 비동기 처리가 필요한 경우 Node.js를 주로 이용하여 구현하고 있습니다. Node.js 프로세스는 PM2를 통해 클러스터 모드로 실행되어 요청을 처리합니다. 클러스터 모드는 프로세스에 대한 로드 밸런싱을 지원하며 프로세스를 순차적으로 재시작할 수 있어 무정지로 서비스를 재시작할 수 있습니다데이터베이스서비스 초기에 MySQL을 사용했고 현재는 MariaDB로 변경한 상태입니다. 한때 DB가 SPOF(Single Point Of Failure)였던 시기를 겪으면서 read/write의 분산을 위해 많은 노력을 들였습니다. 리디북스에서 실행하는 대부분의 데이터 연산은 읽기 동작이므로 애플리케이션 레벨에서 읽기/쓰기 접근을 구분하여 1차적으로 부하를 분산하고, HAProxy를 통해 여러 대의 slave로 분배해 2차적으로 부하를 분산합니다. 쓰기 동작이 빈번하거나 데이터 성격상 NoSQL이 필요한 경우 Couchbase와 Redis를 적극적으로 사용하고 있으며, MariaDB 상에서도 쓰기 동작의 분산 필요성이 대두됨에 따라 상반기에 샤딩을 준비하고 있습니다. 사용자 행동, 트랜잭션 로그 등 하루에도 방대한 양이 쏟아지는 데이터의 경우 Azure 내에 구성한 Hadoop 클러스터에 보관하며, Hive 저장소를 BI(Business Intelligence) 시스템 기반으로 활용하고 있습니다.파일 시스템리디북스에서 다루는 책 파일은 매우 방대하고 중요한 데이터입니다. 어떠한 일이 있어도 데이터 유실이 발생해서는 안되며, 일부 하드웨어 혹은 노드에 장애가 발생하더라도 서비스 장애 없이 파일을 서빙할 수 있어야 합니다. 저희는 GlusterFS로 6대의 노드를 클러스터를 구성하고 이를 파일 접근이 필요한 서버에서 NFS-like 형태로 마운트하여 사용하고 있습니다. 동일 데이터는 여러 노드(3 replica)에 분산 저장되며, 각 노드에도 RAID 구성을 하여 빠른 장애 대응 및 데이터 유실 방지에 노력하고 있습니다.검색리디북스의 책/저자 검색 등은 ElasticSearch를 통해 이루어집니다. 형태소 분석기는 오픈소스인 은전한닢에 따로 정의한 dictionary를 조합해 사용하고 있고, 2대의 노드로 클러스터가 구성되어 있습니다. 추가/변경되는 도서 정보는 증분 색인을 통해 실시간으로 검색 서버에 반영됩니다.작업큐이메일 발송, PUSH 발송 등의 작업들은 웹 애플리케이션이 직접 실행할 경우 페이지 응답속도를 떨어뜨리고, 진행상황 파악이나 실패 시 재시도하는 등의 실행 관리가 어렵습니다. 이런 문제를 해결하기 위해 Beanstalk라는 Work Queue에 작업을 일단 쌓아두고, 여러 대의 서버에서 실행되고 있는 컨슈머들이 작업을 가져와 순차적으로 진행하는 형태로 구성되어 있습니다.모니터링장애 발생 포인트와 시점을 예측할 수 없는 만큼 장애 발생의 빠른 인지를 위해 모니터링은 매우 중요합니다. 리디북스는 99.999%의 고가용성(High Availability)을 목표로, 버그와 장애 없는 안전한 운영을 위해 아래와 같이 다양한 오픈소스 및 유료 솔루션을 도입하여 활용하고 있습니다.30+ 이상의 서버 리소스를 모니터링하기 위한 Munin(On-Premise) 및 NewRelic(SaaS)서버에서 발생하는 각종 오류와 예외를 모니터링하기 위한 Sentry로그인, 결제 등 서점의 핵심적인 기능의 정상 여부를 모니터링하는 Pingdom각종 배치작업과 주기적으로 실행되는 스크립트를 모니터링하기 위한 PushMonNode.js 프로세스나 Redis 상태 모니터링을 위한 Keymetrics(SaaS)데이터의 무결성을 주기적으로 감지하는 각종 In-house 스크립트#리디북스 #서버 #서버개발 #스택 #백엔드 #node.js #개발자 #개발언어 #스킬스택 #소개
조회수 2135

Dropwizard와 Asynchronous HBase 적용기

Background워크인사이트 서비스는 루비 온 레일즈 기반으로 작성된 웹 애플리케이션입니다. 주로 사용하는 데이터의 대부분은 HBase에 저장되어 있습니다. HBase는 자바로 작성된 API를 기본으로 제공하므로, 레일즈가 직접 HBase의 데이터에 접근할 수 없습니다. 따라서 데이터를 효과적으로 읽어들이기 위해서는 두 가지 방법 중 하나를 선택해야 합니다. 첫 번째는 HBase Java API를 이용하기 위해 웹 애플리케이션 역시 자바 기반의 프레임워크로 재작성하는 것이고, 두 번째는 HBase 스토리지 측 데이터 형식과 레일즈 웹서비스 측 데이터 형식을 서로 연결해주는 RPC 중개자를 도입하는 것입니다. 첫 번째 방법은 프로그래밍 언어를 통일함으로써 데이터 통신의 일관성은 물론 시스템 안정성이나 성능 측면에서 좀 더 낫다는 장점이 있는 반면에, 현재까지 작성한 레일즈 애플리케이션을 전부 자바 기반의 프레임워크로 재작성해야한다는 단점이 있습니다. 두 번째 방법은 보다 범용성을 지향하는 방식으로 향후 시스템의 확장에 좀 더 유용하지만, 첫 번째 방법보다 시스템 전체 성능은 뒤떨어진다는 단점을 갖고 있습니다.당시에는 이미 워크인사이트의 개발이 상당히 진척된 상태였기 때문에, 레일즈 프레임워크를 그대로 유지하면서 자바와 소통할 수 있는 JRuby를 사용하는 것이 최선인 것 같았습니다. 하지만 실험 결과 JRuby는 실 사용할 수 없을 정도의 성능을 냈습니다. 무엇보다도 레일즈 지원이 아직 미성숙한 상태였고, 사용중인 루비 젬 중에도 네이티브 C 구현 루비만 지원하는 젬이 상당 수 있었으며, 이러한 이유들로 인해 결국 JRuby는 대안에서 제외되었습니다. 루비 온 레일즈를 버리고 다른 자바 기반 프레임워크로 전면 재작성하기에는 너무 큰 소모비용과 위험요소가 있었기에 다른 방식을 고려하게 됩니다.그래서 조이는, 앞서 말한 크게 두 가지의 대안 중 두 번째, 범용 데이터 중개자를 도입하기로 결정하고, Thrift를 선택하기로 결정하였습니다. Thrift는 페이스북에서 처음 개발하였고, 현재는 아파치 재단에서 관리하고 있는 범용 RPC 프레임워크입니다. 비슷한 기능을 가진 다른 프레임워크로는 구글의 Protocol Buffer나 아파치 Avro등이 있습니다만, Thrift를 선택한 이유는 지원하는 프로그래밍 언어의 종류가 가장 다양하다는 것이었고, 워낙 많은 사용 사례가 있어 신뢰성이 검증되었다는 판단을 했기 때문입니다. Thrift는 그 규모에 걸맞게 다양한 플랫폼별 배포판을 지원하고 있으며, 조이는 현재 사용중인 하둡 시스템 관리용 Cloudera manager를 지원하는 배포판을 이용하여 디플로이하였습니다. 레일즈와의 연동도 thrift젬을 이용하여 손쉽게 할 수 있었습니다. 테스팅 결과도 문제 없었고, 이것으로 모든 것이 잘 돌아가는 줄 알았습니다.그림1. Thrift를 적용한 ZOYI Back-end SystemProblem워크인사이트는 런칭 이후 지금까지 가파른 성장세를 이어오고 있습니다. 서비스 초기에 느긋한 속도로 성장하던 적용 매장 증가 추세는, 2015년 현재 기하급수적으로 증가하는 상승곡선을 그리고 있으며, 그에 따른 시스템의 스케일 업 & 아웃 이슈도 매 달 새롭게 발생하고 있습니다.그림2. 오픈 이후 워크인사이트가 구동 중인 실제 매장 수문제없이 잘 굴러갈 것만 같았던 Thrift서비스 역시 조이의 성장세에 따라 점차 부하가 걸리기 시작했는데, 당초에 기대했던 범용 RPC 프레임워크가 보장하는 확장성과 동시성과는 조금 다른 성격의 문제가 발생하게 되었습니다. 시스템에 대규모 질의가 집중되는 시점에 병목 현상이 발생하고, 이것이 CPU와 메모리의 한도를 초과하면 그대로 다운되는 현상이었습니다. 특히 메모리 사용량이 복구되지 못하고 계속 쌓여만 가는 누수 현상이 치명적이었습니다. 게다가 이렇게 다운된 Thrift가 재시작된 경우, 레일즈와의 연결을 복구하지 못하는 현상도 비주기적으로 발생하였습니다.조이의 하둡 클러스터는 본래부터 확장성을 고려하여 설계되었기 때문에, Thrift에서 발생한 이러한 문제는 생소한 것이었습니다. 다각도에서 테스트를 해 봤지만, 처음에는 원인을 파악하기가 쉽지 않았습니다. 리부트된 클러스터도 자가 복구가 되지 않아, 개발팀이 직접 클라우데라 매니저를 주시하고 있다가 Thrift 서버의 다운 시점에 수동으로 재시작을 해 줘야 하기도 했습니다. 데이터 변환 프로토콜의 문제인지 검토해 보았으나, Thrift 프로토콜이 갖는 본질적 결함은 더더욱 아니었습니다. 자바 언어가 갖고 있는 내재적 결함도 아니었습니다. HBase가 제공하는 자바 API의 문제도 아니었습니다.하지만 심도 있는 검증 과정을 통해, Thrift의 가비지 컬렉션이 제대로 작동하지 않는 문제를 발견하였고, 이는 단순히 Thrift의 최적화의 문제가 아니라는 결론에 이르렀습니다.Dropwizard그렇게 고심하던 개발팀은, 2014년의 워크인사이트 첫 런칭 시점으로 되돌아가서 생각해보기로 합니다. 당시의 조이가 먼저 생각했던 방식은 JVM 기반의 프레임워크였는데, 자바를 이용하여 서비스 레벨도 구현하면 Thrift에서의 데이터 변환 과정에서 야기되는 문제를 원천적으로 방지할 수 있음에 다시금 주목하게 되었습니다. 많은 프로그래밍 언어간의 데이터 통신을 위해 설계된 Thrift는 사실 레일즈와 자바로 균일하게 구축된 조이 시스템에는 필요 이상으로 무겁고 큰 프레임워크였습니다. 조이가 겪은 이런 Thrift의 문제를, 해외의 여러 기업들도 경험하였고 각기 다른 방법으로 최적화를 진행한 것도 알게 되었습니다. 이렇게 된 이상 바꿀 수 밖에 없었던 것입니다.그래서 다음 대안을 찾기 위해 많은 리서치와 스터디를 진행했습니다. 넘쳐나는 프레임워크들의 홍수 속에서 가볍고 안정적이며 구현이 편리한 프레임워크를 찾기란 쉽지 않았습니다만, 결국 Dropwizard라는 자바 프레임워크를 도입하기로 결정하게 됩니다. Dropwizard는 이미 잘 알려져 있는 Spring이나 Play 등과 같은 풀 스택 자바 프레임워크와는 다른, 경량 REST API 프레임워크입니다. Dropwizard는 모듈화가 잘 되어 있고, 숙성된 자바 생태계의 안정적인 라이브러리(Jetty, Jersey, Jackson)들을 사용하였으며, 모던 자바에 걸맞는 방식(리플렉션, 동시성 등)을 사용하기 쉽게 패키징되어있습니다. 국내에는 잘 알려지지 않았지만, 해외에서는 이미 Airbnb 등 유수의 스타트업들이 실제 서비스에 사용함으로써 그 유용성을 입증하고 있는 프레임워크입니다.그림3. Dropwizard로 새로 구성된 ZOYI Back-end System다만, 처음 사용하는 프레임워크에 조이의 모든 서비스를 포팅하는 것은 불가능에 가까웠고, 설령 하더라도 엄청난 리스크를 감당할 가치가 있는 지 의문이었습니다. 레일즈가 보장해주는 빠른 기능 구현과 쉬운 배포 및 강력한 ORM 등은 루비 온 레일즈가 주는 최대의 강점이기에, 이를 포기하기는 쉽지 않았습니다. 생산성과 성능, 어느 한 쪽도 놓치고 싶지 않았습니다.그래서 조이는 두 마리 토끼를 다 잡아 보기로 결정합니다. 레일즈의 장점을 유지하면서, Dropwizard의 최대 장점인 HBase 데이터 접근의 유연성도 살릴 수 있는 방법을 찾기로 하였고, 결론적으로 Dropwizard는 기존의 Thrift가 담당하던 데이터 중개자의 역할만을 수행하게 되었습니다. Dropwizard의 잘 나뉘어진 모듈화는 이를 가능하게 해 주었습니다. 모든 모듈을 사용하면 풀 스택 프레임워크에 버금가는 규모의 시스템도 구축할 수 있지만, 필요한 것만 선택하여 사용하면 가볍고 빠르게 작동하는 미들웨어 역할도 가능한 것입니다.Asynchronous HBase, and Java 8Dropwizard가 HBase 연결에 사용한 클라이언트 모듈은 AsyncHBase입니다. Asynchronous HBase는, 타임스탬프 기반 데이터베이스인 OpenTSDB를 만든 팀이 자신들의 제품에 HBase를 연동하기 위해 기존의 HBase 클라이언트인 HTable을 대체하는 모듈을 재작성한 것으로, 완전한 비동기 방식과 넌블록킹 및 스레드 안전성 보장이 강점이라 할 수 있습니다. AsyncHBase와 Dropwizard를 연동하는 것은 매우 수월했습니다. 테스트 결과, 간결한 코드로도 초당 수 만 단위의 동시성을 안정적으로 처리할 수 있음을 검증했습니다. 조이는 OpenTSDB를 실시간 데이터 분석에 사용하고 있어, 해당 팀이 제공하는 제품의 품질과 전망에 대해 신뢰를 갖고 있었습니다. 테스트 결과는 이 신뢰를 더욱 뒷받침해주었고, 본 모듈을 Dropwizard의 HBase 연결 모듈로 선정하게 되었습니다.또한, Dropwizard와 AsyncHBase의 도입과 함께 처음으로 자바 버전 8로의 이식도 진행하게 되었습니다. 자바 8은 람다와 스트림 등 함수형 프로그래밍의 여러 기법을 대거 도입하였고, 자바 특유의 장황한 문법을 조금 더 간결하게 축약할 수 있는 장점이 있습니다. Dropwizard와 AsyncHBase 모두 자바 8과 순조롭게 연동되었으며, 이 결과에 만족한 조이는 기존의 하둡 맵 리듀스 프로젝트 역시 자바 8로 버전업하기로 결정하였습니다.PerformanceDropwizard의 성능 테스트 결과는 만족스러웠습니다. AsyncBase도 기대를 저버리지 않는 결과를 보여 주었습니다. HBase Java API와의 매끄러운 연동은, 성능 측면에서 기존과는 비교할 수 없을 정도의 향상을 보여주었고, 이 덕분에 기존 맵 리듀스 워크플로우 중 일부를 실시간 처리로 옮겨, 좀 더 유연하고 동적인 분석이 가능하게 되었습니다.다음의 비교는 Thrift와 Dropwizard의 각각의 벤치마크 테스트를 100개 동시 작업, 단위당 10000개의 요청으로 수행한 경우의 결과를 나타낸 것입니다.그림4. Thrift 테스트 시의 메모리 사용량Concurrency Level: 100 Time taken for tests: 514.315 seconds Complete requests: 10000 Failed requests: 0 Total transferred: 32090000 bytes HTML transferred: 27600000 bytes Requests per second: 19.44 [#/sec] (mean) Time per request: 5143.151 [ms] (mean) Time per request: 51.432 [ms] (mean, across all concurrent requests) Transfer rate: 60.93 [Kbytes/sec] received Thrift 벤치마크 결과. 전체 수행에 514초가 걸렸습니다.그림5. Dropwizard 테스트 시의 메모리 사용량Concurrency Level: 100 Time taken for tests: 4.599 seconds Complete requests: 10000 Failed requests: 121 (Connect: 0, Receive: 0, Length: 121, Exceptions: 0) Non-2xx responses: 121 Total transferred: 23288000 bytes HTML transferred: 21559452 bytes Requests per second: 2174.25 [#/sec] (mean) Time per request: 45.993 [ms] (mean) Time per request: 0.460 [ms] (mean, across all concurrent requests) Transfer rate: 4944.72 [Kbytes/sec] received Dropwizard 벤치마크 결과. 전체 수행에 4초가 걸렸습니다!그림6. 초당 처리량 (높을수록 좋음)벤치마크 테스팅 시 스레드 분산이 최적화 된 경우에는 최대 100배 이상의 속도 향상이 있었습니다. Dropwizard는 기존 Thrift에 비하여 성능 향상은 물론, 안정성 면에서도 시스템이 다운된 이후에 자동 복구되지 않는 현상도 사라졌습니다. 무엇보다도 짧은 코드만으로 대규모의 질의에도 견고하고 신속하게 반응하는 서비스를 구현할 수 있다는 점이 Dropwizard의 가장 큰 장점입니다.Conclusion유용한 오픈소스 프로젝트는 시장에 너무나도 많이 널려 있습니다. 이 중에 어떤 것을 선택하는가는 소프트웨어 기업에게 중요한 안건이며, 잘못된 결정은 프로젝트 자체는 물론 회사의 생사를 결정하기까지 합니다. 조이는 적합성, 성능, 안정성, 생산성 등 모든 면에서 조이의 서비스와 알맞는 제품을 찾으려고 항상 노력하고 있으며, 가능한 한 넓고 깊은 검증, 분석 및 연구를 통해 최적의 대안을 찾아내고 있습니다. 그 결과, 이번 Dropwizard와 Asynchronous HBase를 도입하여 기존의 Thrift를 대체하는 프로젝트는 예상보다 훨씬 좋은 성과를 낼 수 있었습니다. 국내에는 Dropwizard의 실무 사용기 등을 찾아보기 힘들고, 한글화된 문서 자체도 찾기 쉽지 않은데, 이 글이 앞으로의 선택을 고민하는 분들, 드롭위자드에 관심이 있는 분들께 도움이 될 수 있으면 좋겠습니다.#조이코퍼레이션 #개발팀 #개발자 #개발환경 #업무환경 #인사이트 #경험공유
조회수 2721

iOS 개발을 위한 11가지 노하우

Overview기고 제안을 받자마자 iOS 개발을 시작했을 때가 떠올랐습니다. 신대륙을 마주한 것 같았던 그때의 기분을 아직도 잊지 못하기 때문입니다. 당시까지만 해도 Android 개발만 했기 때문에 iOS는 그야말로 미지의 영역이었습니다. 게다가 개발을 시작하려고 조심스럽게 첫 발을 내딛은 순간, 입이 떡 벌어질 수밖에 없었죠.“이렇게 느린 IDE가 있다니…““개발자 프로그램이 뭐 이렇게 비싸?”XCodeXCode는 그동안 접했던 IDE 중에서도 가장 최악이었고, 개발자 프로그램 등록은 13만 원 상당의 비용을 지불해야 했습니다. 가장 중요한 건 맥 컴퓨터(Macintosh)를 보유해야만 했죠. 처음 개발을 시작하려니 넘어야 할 산이 매우 많았습니다. 맞습니다. 팜므파탈의 대명사 마타하리(Mata Hari)처럼 iOS 개발은 밀당과도 같습니다. 분명 매력적인 일이지만 XCode와 개발자 프로그램 등록은 빙산의 일각이기 때문입니다. iOS는 곳곳에 구덩이를 파고 초보 개발자들을 집어삼킬 준비를 하고있습니다. (예를 들면 리소스를 묶어놓은 R.java 파일 같은 레퍼런스가 없습니다. 흑.)그래서 준비했습니다. 수많은 초보 개발자들이 iOS의 구덩이를 피해갈 수 있는 팁을 말이죠.iOS의 구덩이를 피하는 11가지 방법1.비싼 맥(Macintosh)을 사세요.iOS 개발자에게 MacOS는 필수입니다. XCode가 MacOS만 지원하기 때문입니다. 오픈 소스로 공개된 Swift에는 제약이 없지만 XCode는 MacOS에서만 동작하는 제약이 있습니다. 따라서 맥은 iOS 개발자에게 가장 필요한 준비물입니다. 게다가 하드웨어 리소스를 많이 사용하는 XCode 탓에 더 크고, 더 비싸고, 더 아름다운 맥을 구매하셔야 합니다. Macbook이나 Macbook Air 모두 추천하지 않습니다. 15형 Macbook Pro 모델을 비롯해, Mac Pro나 iMac Pro 등의 고급 모델을 사용하면.. 개발이 잘 됩니다.2.돈을 내세요.iOS를 개발하려면 가장 먼저 Apple Developer Portal에서 연 129,000원의 개발자 프로그램에 등록해야 합니다. XCode를 사용해서 코드만 볼 것이라면 문제가 되지 않지만, 디바이스에 앱을 설치하고, 테스트하며, AppStore에 배포할 거라면 반드시 구매해야 합니다. 이 계정은 앞서 말한 것처럼 1년이 지나면 다시 구매해야 합니다. 만약 기업 개발자로 등록하려면 Enterprise Program이 따로 준비되어 있습니다. 기업을 위해 특화된 In-House 배포 등의 이점이 있습니다. 구매해야할 것이 꽤 많죠? 이제 익숙해져야 합니다.3.XCode를 설치하세요.XCode는 Mac App Store에서 설치할 수 있습니다. 용량이 크기 때문에 설치하기 전에 하드디스크 저장공간부터 확인하는 것이 좋습니다. 처음 실행하면 추가 컴포넌트를 다운로드하는 과정이 실행되고, 그 이후에 XCode를 사용할 수 있습니다. XCode와 관련된 자세한 내용은 아래에서 자세하게 다루겠습니다.4.어려운 것에 대비하세요.1)인증서‘들’XCode 설치 이후에도 몇 가지를 발급 받고, 셋업해야 합니다. 방 탈출 게임처럼 한 단계 한 단계 거치는 과정이 필요합니다. 첫 번째로 인증서‘들’을 발급받아야 합니다. 애플을 대신해 앱을 설치하고, 배포할 수 있는 권한을 위임 받는 과정입니다. 이 인증서들은 Apple Developer Portal의 ‘Certificates, IDS & Profiles’ 항목에서 발급 받을 수 있으며, MacOS의 키체인 앱을 이용해 개인 키를 생성하는 방식으로도 방식으로 발급 받을 수 있습니다. 2)디바이스 등록디바이스-iOS-에 개발한 앱을 설치하려면 애플 개발자 계정에 개발용 디바이스를 등록해야 합니다. 이 과정은 XCode에 신규 디바이스를 연결하고, 빌드 및 배포를 할 때 XCode가 알아서 합니다. 만약 디바이스를 보유하고 있지 않은 상황이라면 해당 디바이스의 UUID를 받아서 개발자 포털에 직접 등록할 수도 있습니다. 3)Bundle IDBundle ID는, 앱의 고유한 ID입니다. iOS가 앱을 식별할 때 사용하는 식별자이며, 보통 ‘com.companyname.appname’ 의 형식으로 회사나 개인의 도메인을 거꾸로 쓰는 것이 보편적입니다. 하지만 Bundle ID는 어디까지나 개발자가 결정하는 영역이므로 인스턴스 이름 지정하듯이 자신만의 고유한 방법을 사용해서 Bundle ID를 지정해도 문제가 없습니다. 4)Provisioning ProfileProvisioning Profile은 디바이스 정보와 앱 정보, 인증서 정보를 매핑해주는 Profile입니다. 최신 XCode에서는 이 Provisioning Profile을 자동으로 관리해주기 때문에 따로 신경쓰지 않아도 좋습니다.5.개발자 포럼에 질문하거나, StackOverflow에 질문하거나!질문하는 사람은 아름답습니다. 궁금하거나, 잘 안 풀리는 코드는 개발자 포럼에서 질문할 수 있습니다. 대신 영어 실력이 좋아야 합니다.크게 기대는 하지 않는 것이 좋습니다. 등록된 discussion에 대한 답글들이 ‘나도 같은 상황이다’, ‘나도 궁금한 점이다’ 등의 다른 개발자들의 답변 정도가 일반적이기 때문이죠.그들의 답변...저는 개발자 포럼보다 StackOverflow를 더 선호합니다. 참여하는 개발자 규모가 다르기 때문에 보다 양질의 정보를 빠르게 찾을 수 있습니다. (하지만 허위 정보도 존재합니다.) Vote 시스템으로 신뢰 높은 정보를 필터링할 수 있으나, 어떤 정보를 선택할지는 당신의 몫입니다.6. iTunesConnect와 친하게 지내세요.앱을 개발했다면, iTunesConnect를 통해 앱을 전 세계의 사용자들에게 배포할 수 있습니다. iTunesConnect는 iOS용으로 개발된 바이너리를 배포하는 등 앱 배포/테스트와 관련된 전반적인 사항들을 관리할 수 있는 포털입니다. AppStore에서 앱을 판매하려면 이 iTunesConnect를 통해 애플과 계약을 해야만 가능합니다. 출시할 앱을 등록하기도 하고, 앱의 사용자들이 어떤 경향을 보이는지 Trend Analysis를 확인할 수도 있습니다.iTunesConnectiTunesConnect에는 다양한 메뉴들이 있고, 앱을 배포하고 관리하는데 필요한 여러 툴이 있으므로 개발 중에 시선을 환기하고자 한다면 iTunesConnect를 한 바퀴 둘러보는 것도 좋습니다. 언젠가는 다 사용하게 될 테니까요.7.앱 개발을 마쳐도 XCode를 사용하세요.앱을 개발하고 iTunesConnect에 업로드하려면, XCode를 통해 간접적으로 바이너리를 업로드하게 됩니다. 서드파티 앱을 사용할 수도 있지만, 제가 주로 많이 사용하는 방식은 XCode입니다. 소스코드가 준비되었다면, XCode 메뉴의 Product > Archive 메뉴를 선택해 XCode가 배포용 앱을 빌드합니다. 빌드가 완료되면, 자동으로 Organizer 창이 열리면서 앱을 업로드할 수 있게 되죠. 이 때 미리 구매한 개발자 계정의 인증서가 준비되어 있어야 합니다. 모든 준비가 완료되고 아카이빙이 완료되면, Organizer의 Archives 탭에서 우측단의 ‘Upload to App Store…’ 버튼으로 바이너리 업로드를 진행할 수 있습니다.8.배포 전에 시험비행을 해봅시다.앱을 개발했다면, 테스트플라이트(TestFlight)를 통해 실제로 앱을 배포하기 전 ‘시험비행’을 할 수 있습니다. iTunesConnect에 관련 테스터들을 등록하고, 등록된 사용자들을 대상으로 미리 앱을 테스트할 수 있도록 요청하는 것이죠. 이 테스트플라이트에 배포된 바이너리를 그대로 AppStore에 배포하게 되므로, 테스트용으로 유용합니다.TestFlight테스트플라이트는 원래 iOS 배포 관리 솔루션을 제공하는 업체였지만 지금은 애플이 인수해 iTunesConnect에서 관리하도록 제공하고 있습니다.9.앱이 죽는다면 Organizer로 확인하세요.iOS는 충돌보고 Crash Report를 Organizer를 통해 오류를 확인합니다. 앱을 설치한 사용자가 동의하면 XCode는 iOS가 앱을 실행하면서 발생한 Crash Report를 애플에 자동으로 업로드합니다. 업로드된 Crash Report들은 XCode의 Organizer를 통해 다운로드하고, 확인할 수 있습니다. Organizer는 XCode > Window > Organizer 항목에서 실행하세요.Organizer와 Crash ReportCrash Report는 Organizer의 상단 Crashes 탭에서 확인이 가능합니다. 또 현재 보고 있는 Crash Report의 어느 부분에서 오류가 발생했는지 알고 싶다면 우측단의 ‘Open in Porject…’ 버튼을 눌러보면 됩니다.10.내 친구 XCode최근 XCode는 메이저 업데이트를 통해 사용성과 퍼포먼스를 향상시켰습니다. 하지만 이만큼 무겁고 느린 통합개발툴 IDE는 이클립스(Eclipse) 이후에 처음입니다. 안드로이드의 경우 IntelliJ 기반의 Android Studio로 쾌적한 개발환경을 제공하고 있는 반면, XCode의 업데이트는 퍼포먼스나 사용성 개선보다는 Swift의 메이저 버전 반영에 더 급급한 느낌입니다. (업데이트 때마다 속지만 ‘혹시 이번에는..’하고 또 속아 넘어갑니다.) XCode 사용을 위한 네 가지 팁을 소개합니다.1)XCode는 모노로그입니다.XCode는 로그를 따로 ‘예쁘게’ 볼 수 없습니다. 검은 화면에 흰 로그가 정리되지 않은 상태로 마구마구 출력됩니다. 개발자들에게는 쥐약같은 상황이죠. 이런 불편한 로그 출력 방식 때문에 저는 별도의 GlobalLogger 모듈을 작성해서 다음과 같은 스타일로 로그를 출력하도록 하고 있습니다.$$ BrandiLogger Error Log ##MESSAGE: Initial Parameter is not exist. ##LOCATION: BRLogPringer.swift @Line: 122 2)iOS개발자를 위한 휴식시간, 빌드 타임XCode의 빌드 타임은 개발자에겐 기나긴 휴식 시간입니다. 소스가 비대해질수록 퍼포먼스는 떨어지며, 담배 한 대를 태우고, 화장실에서 손을 씻고 들어와도 빌드가 절반도 안 된 상황을 마주할 겁니다. 빌드 타임을 줄이고자 구글링을 하면 몇 가지 팁을 발견할 수 있는데, 특히 빌드 타임을 가장 많이 단축할 수 있는 방법이 있습니다.짜잔! 공개합니다!먼저, 프로젝트 셋팅의 ‘Build Settings’ 항목에서 ‘Optimization Level’을 검색합니다. ‘Swift Compiler - Code Generation’ 항목을 찾을 수 있는데요. 여기서 Optimization Level의 Debug 항목을 ‘None’으로 설정하면, 빌드시간이 엄청나게 줄어든 것을 확인할 수 있습니다. Brandi iOS 버전의 소스코드는 원래 컴파일에 7분 이상이 소요되었지만, Optimization Level을 변경한 후 1분 내외로 단축되었습니다. Optimization Setting을 변경할 때는 꼭 Debug 항목만 변경하고, Release 버전은 기존 설정을 유지하는 것이 좋습니다. 그래야 빌드 과정에서의 버그를 막을 수 있기 때문이죠. 만약 이 설정으로 개발하던 도중 소스가 충돌되면 Command+Shift+K 단축키를 눌러 소스를 한 번 클린하고, 재빌드하세요. 충돌이 사라지는 경우가 많습니다. 빠른 빌드를 위해 종종 감수해야 하는 부분이기도 합니다. 3)Derived Data빌드가 자꾸 안되고 꼬일 때는 Derived Data 폴더를 삭제 해 보세요. Derived Data 폴더는 XCode > File > Project Settings(Workspace Settings) 항목에서 ‘Derived Data’ 항목 아래의 폴더 경로에서 접근할 수 있습니다. Derived Data 접근 경로Derived Data 폴더를 삭제하면 거짓말처럼 빌드 오류가 사라지는 기적을 만날 수 있습니다. 4)CocoaPods‘바퀴를 두 번 발명할 필요는 없다’는 격언이 있습니다. 이것을 개발에 적용하면 ‘잘 만들어진 라이브러리를 사용하라’ 정도가 되겠습니다. 개발자의 개발 시간을 현저하게 단축시키는 오픈소스 라이브러리. 이것들을 간편하게 사용하는 방식이 iOS에도 존재하는데, 바로 CocoaPods입니다. 프로젝트 Root 폴더에 Podfile을 생성하고, 원하는 오픈소스 라이브러리들을 명시한 후에 ‘pod install’ 명령어를 입력해주면….CocoaPods오픈소스 라이브러리가 설치되었습니다. 귀찮은 소스 다운로드와 임포트 과정을 거치지 않아도 됩니다. CocoaPods 설치와 사용에 관한 글은 구글링으로 쉽게 찾을 수 있습니다. 꼭 사용하길 권합니다.Mac App Store에서의 XCode 평점XCode는 느리고 불편합니다. 숨겨진 편의기능도 많지만 고질적인 빌드 문제와 사용성 문제를 마주하면 높은 평점을 줄 수가 없습니다. 그런데, 저만 그렇게 생각하진 않더라고요.(위 스크린샷 참조) XCode의 사용법은 기회가 되면 따로 정리하겠습니다.11.어떤 경우에도 대응할 수 있는 화면 구성을 원한다면, AutoLayoutiOS를 사용하면서, 금융권이나 쇼핑 앱들을 사용하다 보면 이런 상황이 발생합니다. 금융권 앱. 화면에 꽉 차지 않는 레이아웃 혹은 비정상적으로 커진 글씨본래 iOS는 단일 디바이스를 지향하는 플랫폼이었습니다. 아이폰 시리즈도 해상도가 변하지 않았기 때문에, 디바이스 종류가 많은 안드로이드처럼 다양한 스크린 사이즈를 지원할 필요가 없었습니다. 하지만 이제는 iPhone SE, iPhone 8, iPhone 8 Plus의 해상도에 iPhone X의 해상도까지 더해지면서 그야말로 ‘해상도 춘추전국시대’가 되었습니다.이런 다양한 해상도를 모두 지원하는 레이아웃을 구성하려면, iOS에서는 AutoLayout을 사용해야 합니다. AutoLayout은 Xib Editor에서 AutoLayout을 활성화하는 방식으로 사용할 수 있습니다. 거기에 한 가지 덧붙이면 Layout Constraints라는 개념도 있습니다. 레이아웃에 조건을 주는 방식입니다. 예를 들어 ‘어떤 해상도에서든 이 컴포넌트는 왼쪽 끝으로부터 10Point의 여백을 가지도록 한다’ 라는 식이죠. AutoLayout, Layout Constraint이 Layout Constraint를 이용하면 짧은 시간 안에 다양한 해상도를 지원하는 레이아웃을 쉽게 만들 수 있습니다. 가히 AutoLayout의 꽃입니다.ConclusionXCode/iOS 개발과 관련된 팁은 대부분 구글링으로 찾을 수 있습니다. 다룰 내용이 많지만 초보 iOS개발자들이 당황할 수 있는 내용을 중심으로 글을 썼습니다. 소소한 이야기지만, 분명 도움을 받을 수 있을 겁니다.글이정환 과장 | R&D 개발1팀leejh@brandi.co.kr브랜디, 오직 예쁜 옷만#브랜디 #iOS #개발기 #업무환경 #인사이트 #경험공유 
조회수 10176

Next.js 튜토리얼 7편: 데이터 가져오기

* 이 글은 Next.js의 공식 튜토리얼을 번역한 글입니다.** 오역 및 오탈자가 있을 수 있습니다. 발견하시면 제보해주세요!목차1편: 시작하기 2편: 페이지 이동 3편: 공유 컴포넌트4편: 동적 페이지 5편: 라우트 마스킹6편: 서버 사이드 7편: 데이터 가져오기 - 현재 글8편: 컴포넌트 스타일링9편: 배포하기개요꽤 그럴듯한 Next.js 애플리케이션을 만드는 방법과 Next.js 라우팅 API의 모든 장점을 배웠습니다.대부분의 경우 데이터 소스에서  원격으로 데이터를 가져와야 합니다. Next.js는 페이지에 데이터를 가져오기 위한 표준 API를 제공합니다. getInitialProps라 불리는 비동기 함수를 사용하여 구현할 것입니다.주어진 페이지에 원격 데이터 소스를 통해 데이터를 가져오고 원하는 페이지에 props을 통해 전달할 수 있습니다. 서버와 클라이언트 둘 다 동작하도록 getInitialProps를 작성할 수 있습니다. 그래서 Next.js는 클라이언트와 서버에서 모두 사용할 수 있습니다. 이번 편에서는 getInitialProps를 사용하여 공개된 TVmaze API에서 가져온 데이터로 배트맨 TV 쇼에 대한 정보를 보여주는 애플리케이션을 구현할 예정입니다.설치이번 장에서는 간단한 Next.js 애플리케이션이 필요합니다. 다음의 샘플 애플리케이션을 다운받아주세요:아래의 명령어로 실행시킬 수 있습니다:이제 http://localhost:3000로 이동하여 애플리케이션에 접근할 수 있습니다.배트맨 쇼 데이터 가져오기데모 애플리케이션 내의 home 페이지에 블로그 포스트 목록이 있습니다. 배트맨 TV 쇼 목록을 표시할 것입니다.쇼의 데이터들을 하드코딩하는 대신에 원격 서버에서 그 정보를 가져옵시다.여기서는 TV 쇼를 가져오기 위해 TVMaze API를 사용합니다.TV 쇼 정보를 검색하는 API 입니다.먼저 isomorphic-unfetch를 설치해야 합니다. 데이터를 가져올 때 사용할 라이브러리입니다. 브라우저 fetch API 구현을 간단히 할 수 있도록 만들어진 것이지만 클라이언트와 서버 환경에서 모두 동작합니다.npm install --save isomorphic-unfetchpages/index.js를 다음과 같이 변경해주세요:위의 페이지에 있는 모든 내용은 아래에 표시된 Index.getInitialProps를 제외하고는 익숙할 것입니다:애플리케이션의 어떤 페이지에든 추가할 수 있는 정적 비동기 함수입니다. 이것을 사용하여 데이터를 가져오고 가져온 데이터를 props를 통해 페이지로 보낼 수 있습니다.보다시피 배트맨 TV 쇼 데이터를 가져오고 'shows' props를 통해 페이지로 전달합니다.위에서 보았던 getInitialProps 함수에서 가져온 데이터 숫자를 콘솔에 출력합니다.이제 브라우저 콘솔과 서버 콘솔을 살펴봅시다. 그리고 페이지를 새로고침 해주세요.페이지를 새로고침 한 후 출력되는 메시지는 어디에서 보였나요?- 서버 콘솔- 브라우저 콘솔- 둘 다- 어떤 콘솔에도 출력되지 않았다서버에서만 출력됩니다이 경우 메시지는 서버에서만 출력됩니다.이는 서버에서 페이지가 랜더링되기 때문입니다.이미 데이터를 가지고 있어 클라이언트에서 다시 정보를 가져올 필요가 없습니다.post 페이지 구현하기TV 쇼에 대한 자세한 정보를 보여주는 "/post" 페이지를 구현해봅시다.먼저 server.js를 열고 /p/:id 라우트를 다음과 같이 바꿔주세요.위처럼 바꾼 코드를 적용하기 위해 애플리케이션을 재실행시켜주세요.이전에는 title 쿼리 파라미터를 페이지에 매핑했습니다. 이제 id로 이름을 바꿔야합니다.다음과 같은 내용으로 pages/post.js를 변경해주세요.페이지의 getInitialProps을 살펴봅시다:여기에서 함수의 첫 번째 파라미터는 context 객체입니다. 정보를 가져올 때 사용할 수 있는 쿼리 필드를 가지고 있습니다.예제에서 쿼리 파라미터로부터 보여지는 ID를 선택하고 TVMaze API로부터 데이터를 가져옵니다.이 getInitialProps 함수에서 표시할 제목을 출력하는 console.log를 추가했습니다. 이제 어디에서 출력되는지 볼 수 있습니다.서버와 클라이언트의 콘솔를 둘 다 열어주세요.그 다음 홈페이지 http://localhost:3000로 이동하여 배트맨 쇼 제목을 클릭하세요.위에서 애기했던 console.log 메시지가 보여지는 장소는 어디인가요?- 서버 콘솔- 브라우저 콘솔- 콘솔 둘 다- 아무 콘솔에서도 출력되지 않는다클라이언트 사이드에서 데이터 가져오기브라우저 콘솔에서 메시지를 볼 수 있습니다.클라이언트 사이드를 통해 포스트 페이지에 이동했기 때문입니다. 그런 다음 클라이언트 사이드로부터 데이터를 가져오는 것은 가장 좋은 방법입니다.예를 들어 http://localhost:3000/p/975에 직접 이동한다면 클라이언트가 아닌 서버에서 메시지가 출력되는 것을 볼 수 있습니다.마무리데이터를 가져오고 서버 사이드에서 렌더링하도록 만드는 Next.js의 가장 중요한 기능 중 하나를 배웠습니다.대부분의 유스 케이스에서 충분히 사용할 수 있는 getInitialProps의 기본을 배웠습니다. 더 많은 것을 배우고 싶다면 Next.js의 문서 중 data fetching 문서를 참고할 수 있습니다.#트레바리 #개발자 #안드로이드 #앱개발 #Next.js #백엔드 #인사이트 #경험공유
조회수 1001

[번역] 개발 게임화 시스템

이 글은 Warby Parker tech team blog의 Systems Development Gamified!를 번역한 글입니다.우리는 이슈가 있었습니다: 우리의 기술팀은 "주도권"을 우려했는데, 이는 와비 파커(Warby Parker)가 개발해야하는 요청, 우선순위, 개발일을 할당하는 것과 관련이 있었습니다.(이는 유연성, 권한부여, 효율성이라는 의문을 제기하기도 했습니다). 모든 일이 그래왔던 것처럼 우리는 발전하고 반복하여 살펴보았습니다. 이는 여러 역할을 수행하는 이해관계자들의 그룹의 사람들을 "우리의 목표를 쇄신하여 엄청난 목표를 달성할 수 있을지를 고민하는 일일 세션"에 참가토록 했습니다. 우선 우리는 현재 프로세스에서 발생하는 사소한 문제들을 해결할 수 있는 문제들에 대해 토론하기 시작했습니다. 그리고 우리는 토론에 근거해 우선순위를 정하고, 일을 선택하는 것에 대한 게임화, 시장중심적인 접근방법을 만들었고 "와블스 프로세스(The Warbles Process")라고 부르기로 했습니다.주요 이해관계자들에게(애원하다시피 부탁하여) 넓은 폭의 설문과 인터뷰를 통한 피드백 이후에, 우리는 단지 소수의 사람만이 엔지니어들에게 할당된 일에 대해서 완전히 만족한다는 점을 알게되었습니다. 주요 문제는 다음과 같습니다.- 유연성 : 이전의 프로세스들은 분기 미팅에 의해 결정되는데, 이 분기 미팅에서 다음 분기에 무엇을 할건지를 선택하고 우선순위를 정하는 일이 사업적인 니즈의 특정 영역에 의해 정해집니다. 이 프로세스는 엄청난 관심을 받고 큰 이슈로 정해지는 반면, 가끔 작거나 예상치 못한 일이 관심을 받지 못하기도 하지요. 빠르게 대처해야하고, 빠르게 진화해야하는 환경에 놓인 우리 비즈니스의 특성상, 분기 단위의 시간은 너무나 깁니다. 또한 이러한 시간 박스(Time box)는 낮은 가치의 프로젝트들을 큰 프로젝트들이 완료된 후 단순히 "틈새를 메우기 위한" 일로 치부될 수 있습니다. 그러기엔 분기는 너무 짧지요.- 가치-우선순위 결정(Value-Prioritization) : 이전의 프로세스에서, 일은 일방적으로 기울어진 시각으로 일부 영역만을 집중하는 경영진(일반적으로 해당 부서의 책임자)에 의해 우선순위가 매겨집니다. 그래서 기술팀은 경영진에 의해 선택된 일이 가끔은 기업에 초점을 맞춘것이 아니라 부서에 초점을 맞춘 것으로 느끼기도 합니다.- 권한부여(Empowerment) : 기술팀은 경영진에 의해 분기 주도적이고 우선순위가 결정된 일을 할당받습니다. 팀은 할당이라는 행동자체에 대해 권한을 행사할 수 있음에도 불구하고, 궁극적으로 의사결정자가 아닙니다. 그리고 한번 주도권을 가지게 되면, 일하는 사람은 그대로 따라가기 마련입니다. 우리는 기술팀에게 권한을 부여하기를 원했고, 이 프로세스는 앞의 목표와 상충되는 것이었습니다.이런 문제를 해결하기 위해서, 우리는 팀을 다시 북돋우고 프로세스를 정비하기로 했습니다. 프로젝트 매니저, 비즈니스 애널리스트, 소프트웨어 엔지니어, 경영진을 한 방에 몰아넣고, 우리의 프로세스 향상에 초점을 맞춘 "종이비행기 린 트레이닝(Paper Airplan Lean Traning)"이라는, 일종의 종이비행기를 접는 Lean 시뮬레이션을 시작했습니다. 우선 우리는 그룹을 두 개의 작은 팀으로 나누었습니다. 각 팀은 우리의 "꿈의 프로세스(Dream process)를 상상하도록 했습니다. 이 시뮬레이션을 반정도 하니 신기한 일이 발생했습니다: 두 팀 모두 이상적인 프로세스에 대한 같은 시각을 가지게 된 것입니다.이 깨달음으로부터, 우리는 피벗(Pivot)하여 두 개의 팀을 하나로 합쳤고 하나의 아이디어에 집중하도록 하였습니다. 엄청난 양의 포스트잇과 수많은 피자 이후에, 기술팀을 위한 우선순위 결정에 대한 새로운 접근방법을 가지게 되었습니다. 이 세션은 이 아이디어에 대해 관심있게 지켜보았던 시스템 기술개발팀의 부사장에게 프레젠테이션을 하는 것으로 마무리 되었고, CEO에게 공유하기전에 아이디어를 공식화하고 디테일을 정착하였습니다.그렇게 와블스 프로세스(Warbles Process)가 탄생하였습니다.와블스 프로세스(Warbles Process)회사 누군가의 요청을 통해 모든 것은 시작됩니다. Epic이라는 폼(Form)을 통해 제출된 백로그(Backlog)는 와비파커 전원이 볼 수 있습니다. 이것의 투표 시스템을 통해 회사의 모든 매니저들은 찬성(Up-vote), 반대(Down-vote), 포기(Decline)를 할 수 있습니다. 각 에픽에 대해서 매니저들은 그들이 생각하기에 현재 회사가 가장 최우선시해야하는지를 생각하고 투표하게 됩니다. 각 찬성표는 5 와블스, 반대표는 -2 와블스를 얻습니다. 이 결과는 그들이 할당한 와블스 가치에 의해 우선순위가 순서대로 리스트에 반영됩니다.(와블스를 일련의 경제학적인 가치 형태라고 가정합니다)와블스 프로세스는 각 기술팀에게 어떤 에픽을 선택하여 진행할지 권한을 부여합니다. 기술팀은 백로그의 상단에서부터 선택하지 않아도 됩니다(혹은 백로그에 없어도 됩니다). 각 팀은 규칙이나 특정 사업영역과 전문적 기술을 조율할 수 있는 선임기술자에 의해 리드됩니다. 리더에 의한 관리하에, 팀은 그들의 특정 기술이나 경험에 기반하여 가장 효율적으로 완수할 수 있는 에픽을 선택합니다. 6개월뒤, 평균 와블스/엔지니어 가 가장 높은 팀이 우승을 차지합니다! 이긴 팀은 특별한 팀 회식을 즐깁니다.이 가치 기반의 접근은 우리의 업무 선택과 우선순위 결정 절차를 게임화하였습니다. 그리고 팀은 상하로 정렬되거나 중심적 업무 할당방식이 아닌 요청 방식으로부터 높은 우선순위의 일을 선택하여 일함으로써 인센티브가 있다는 느낌을 받습니다. 아직은 이를지 몰라도, 우리는 이 방식이 우리와 같은 빨리 진화해야하는 조직에 굉장히 잘맞는다는 것을 깨달았고, 게다가 기술팀이 일을 선택하는 권한을 부여하여, 조직 전체적으로 주목을 받고있는 가장 밀접한 일을 하고 있다고 확신하는데 도움을 주기도 합니다.우리는 와블스 프로세스를 적극적으로 평가하는 중입니다. 지금까지 와블스는 이전의 프로세스때문에 주목을 받지 못했던 여러 프로젝트들에 대해 격렬한 비판을 할 수 있는 역할을 톡톡히 수행하고 있습니다. 또한 다른 프로세스와 비교했을때, 내부 이해관계자들과 프로젝트에 참여하는 기술팀의 행복지수가 모두 엄청나게 상승하는것을 보았습니다. 게다가 조직 전체에서 깊게 관련되지 않은 사람들에게도 긍정적인 피드백을 받는 중입니다.(모두가 윈윈하는 길이네요!)#비주얼캠프 #인사이트 #경험공유 #조언 #개발자 #개발팀
조회수 1845

더 빠른 Android App Build

Android App Build의 변화Android App 개발에서 빌드는 올해 중순을 기점으로 큰 변화를 가져왔습니다.Ant 에서 Gradle 로… Eclipse 에서 Android Studio 로…Android Studio 는 JetBrains 사의 IntelliJ 의 Community 버전을 커스터마이징한 것입니다.Gradle 은 Ant 의 빌드 기능 에 Maven 의 의존성 관리 기능이 접목된 빌드 툴입니다. 그만큼 제공하는 기능이 다양하며 동시에 의존성에 대한 문제도 함께 해결이 되었습니다.큰 변화는 장점과 단점 모두를 가져왔습니다. 대표적인 장점은 기존에 Eclipse 에서는 한계가 있었던 Plugin 기능이 더욱더 다양해졌다는 것입니다. 반면 갑작스럽게 바뀐 IDE 와 빌드툴은 여전히 큰 장벽으로 존재하고 있습니다.특히 Gradle 의 성능 문제는 줄곧 거론되었습니다. Eclipse 에서는 빠르게 빌드되던 것이 Gradle 기반으로 전환되면서 적게는 2배에서 5배 이상 오래 소요되는 문제를 가져오게 되었습니다.그러한 문제는 토스랩의 안드로이드 팀도 빗겨갈순 없었습니다.코딩-빌드-실행이라는 반복적인 패턴에서 빌드에 소요되는 시간이 개발의 흐름을 끊게 되는 상황에서 이를 개선하는 것은 필수적인 요소였습니다.이 포스팅은 그동안 잔디의 안드로이드 팀이 빌드 속도를 개선하기 위해 노력했던 흔적들의 모음입니다.New Android App Build System1. Bazel (Google)본디 Android 만을 위한 빌드는 아니고 iOS 까지 빌드 할 수 있는 통합 빌드 시스템이라고 보시면 됩니다. Google 의 빌드 시스템인 Blaze 에서 파생된 빌드 프로젝트로 현재 베타로 등록, 진행되고 있습니다.2. Buck (Facebook)Bazel 보다는 좀 더 다양한 언어를 지원하기 위한 프로젝트로 보여집니다. 실제로 Go, Rust 등 다양한 언어를 지원하는 빌드 툴이라고 생각하시면 됩니다.3. Pants (Twitter, FourSquare, Square)3개의 회사가 협동해서 만든 빌드 툴입니다.특이점은 Bazel 만 Mobile Platform 을 위해 개량된 빌드 툴이고 2개는 좀 더 다양한 빌드 환경을 제공한다는 것입니다.Build 시스템의 성능들1. Bazel| —-| 출처 : Bazel(http://bazel.io/docs/mobile-install.html)|구글의 자료에 의하면 기존에 비해 4배~10배 의 성능 향상이 있다고 합니다.2. Buck|**Gradle**|**Buck**| | ----|----|----|----| clean build|31s|6s|5x| incremental build|13s|1.7s|7.5x| no-op build|3s|0.2s|15x| clean install|7.2s|7.2s|1x| incremental install|7.2s|1.5s|4.8x| 출처: Buck (https://buckbuild.com/article/exopackage.html)Gradle 과 비교Gradle 팀에서는 Bazel 에 대해서 2015년 3월 포스팅에 아래와 같이 평하였습니다.Gradle 팀이 꼽은 Bazel 의 단점Bazel 은 구글의 특화 되어 있으며 쉽게 빌드 할 수 있을만큼 고수준 상태가 아니다확장성이 떨어진다.성능은 의존성이 해결된 이후의 문제이다.*nix 환경(Mac, 유닉스, 리눅스를 지칭)에서만 가능하다. 아직 많은 엔터프라이즈 툴들이 .Net 기반이다.(51%)플러그인을 위한 생태계가 구성되어 있지 않다.결론각각의 빌드 시스템들이 제공해주는 정보에 따르면 새로운 빌드 시스템은 큰 차이를 보여주는 빌드 환경을 제공해줍니다. 하지만 그런 이점에도 불구하고 잘 알려지지 않은 이유는 설정에 큰 어려움이 있기 때문입니다. Gradle 과 Android Plugin 에서 제공해주던 것을 직접 스크립트로 작성을 해야하며 각각의 의존성에 대해서도 직접적으로 명시를 해줘야 하기 때문에 정교하고 어려운 작업입니다. 또한 개별적으로 Plugin 을 제공하지 않아 Crash Report 를 위한 툴이나 Build 과정에서 추가적인 작업들이 필요한 경우에도 별도의 작업을 필요로 합니다.이러한 어려움에 기존의 Gradle 에서 새로운 빌드 환경으로의 전환은 쉽지 않으며 끊임없는 도전이 될 것입니다.그래서 잔디의 안드로이드 팀이 선택한 것은 Gradle 에서 성능 극대화 하기 입니다.Gradle 의 성능 개선하기1. Gradle 의 최신화$> vi $project/gradle/wrapper/gradle-wrapper.properties distributionUrl=https\://services.gradle.org/distributions/gradle-2.9-all.zip2. Android Gradle Plugin 최신화buildscrpt { dependencies { classpath 'com.android.tools.build:gradle:1.5.0' } }3. 최소 지원 기기 설정하기android { productFlavors { dev { minSdkVersion 21 } prod { minSdkVersion 14 } } }minSdkVersion 을 LOLLIPOP 으로 설정하게 되면 Build 하는 과정에서 큰 부분이 생략이 되고 특히 MultiDex 를 설정한 프로젝트에서 더 큰 효과를 보실 수 있습니다. Android 는 컴파일 및 패키징과정에서 Class to Dex 와 Merge Dex 을 거치게 됩니다. 이때 하지만 LOLLIPOP 부터는 art 기반이기때문에 Merge Dex 과정이 생략되기에 빌드 성능이 크게 개선됩니다. 단, API 21을 바라보기때문에 lint 나 개발 과정에서 API 특화 대응이 되질 않을 수 있습니다. 유의해서 API 를 사용해주세요.4. Gradle 속성 추가$> vi $project/gradle.properties org.gradle.daemon=true org.gradle.parallel=true org.gradle.jvmargs=-Xmx768m5. DexOption 추가android { dexOptions { incremental true } }※incremental 은 잠재적 오류가 있을 수 있으니 조심해서 사용하라고 합니다. (참고링크)빌드 성능 비교빌드 환경 : MacBook Pro Retina 2012 (i7 2.3Ghz, 8GB Ram)|**변경 전**|**변경 후**| | ----|----|----|----| SingleDex clean build|57s|47s|1.2x| SingleDex incremental build|16.3s|9.6s|1.7x| MultiDex clean build|71s|71s|1x| MultiDex incremental build|48s|17.6s|2.7x| Incremental Build 를 보면 Single Dex, Multi Dex 모두에서 주목할만큼 성능 향상이 있습니다. 개발 과정에서는 Incremental Build 가 대다수의 빌드임을 감안한다면 Gradle 옵션을 수정이 개발 과정에서도 충분히 좋은 성능을 얻을 수 있음을 알 수 있습니다.코딩-빌드-실행을 반복해야하는 패턴에서 최대한 코딩과 테스트에 집중할 수 있는 환경을 만들기 위해 했던 많은 시도들이 다른 안드로이드 개발자분들에게 큰 도움이 되었으면 합니다.#토스랩 #잔디 #JANDI #개발 #개발자 #개발팀 #모바일 #안드로이드 #Android #꿀팁
조회수 1728

파이썬의 개발 “환경”(env) 도구들

안녕하세요. 스포카 프로그래머 홍민희입니다.파이썬 패키징 생태계에서 개발 환경을 구성하기 위해 널리 쓰이는 virtualenv나 pyvenv, virtualenvwrapper 같은 각종 도구가 왜 필요한지 (또는 자신에게는 큰 도움이 안 되는지) 알려면 그 이전의 파이썬 라이브러리 배포 방식에 대한 이해가 많은 도움이 됩니다. 여기서는 필요한 몇 가지 역사적 사실과 파이썬 패키징 개념 중 현재의 생태계 이해에 필요한 것들을 위주로 정리하고, 최종적으로 각자의 필요에 따라 어떤 도구를 활용하면 될지 지침을 제안합니다.sys.path패키징이고 뭐고 아무것도 없던 90년대 말에는 라이브러리 소스 코드 파일들을 타르볼(tarball)로 압축해서 배포했습니다. 쓰는 사람은 그걸 자신의 애플리케이션 소스 트리 안에 풀어서 사용했습니다.파이썬에는 지금도 sys.path라는 인터프리터 전역적인 상태가 존재합니다. PATH 환경 변수가 실행 바이너리를 찾을 디렉터리 경로들의 목록인 것과 비슷하게, sys.path도 import foo를 하면 foo.py (또는 foo/__init__.py) 파일을 찾을 디렉터리 경로들의 목록을 담습니다. 그리고 기본 동작으로 그 목록의 맨 처음에는 현재 디렉터리(./)가 들어갑니다. 따라서 라이브러리 타르볼을 애플리케이션 소스 트리에 풀어두면 import해서 쓸 수 있습니다.하지만 자신이 작성한 애플리케이션 코드와 남이 작성한 라이브러리 코드를 같은 소스 트리에서 관리하는 것은 여러모로 불편합니다. 따라서 라이브러리는 애플리케이션 소스 트리와는 별도의 디렉터리(예: ../libs/)에 풀어서 관리하고, 애플리케이션 소스 코드 맨 위에 아래와 같이 써두는 패턴이 많았습니다.import sys sys.path.append('../libs') 또는 sys.path를 소스 코드를 건드리지 않고 조작하기 위해 PYTHONPATH 환경 변수를 활용하는 경우가 많았습니다.세기말, 파이썬 1.5를 쓰던 때의 이야기입니다.site-packages새 천 년이 밝았고 파이썬 2.0이 나왔습니다. 표준적인 라이브러리 배포 방식 및 설치 방식이 제안되었고, 표준 라이브러리에 distutils도 들어왔습니다. (지금도 setuptools는 distutils에 의존하고, pip는 setuptools에 의존합니다.) 제안된 방식은 이랬습니다.애플리케이션 코드가 아닌 라이브러리 소스 코드는 모두 /usr/local/lib/pythonX.Y/site-packages/ 디렉터리 안에 둡니다. X.Y는 파이썬 인터프리터 버전이고, 경로는 인터프리터를 빌드할 때 (./configure) 정합니다. 데비안 계열은 site-packages 대신 dist-packages라는 이름으로 바꿔서 빌드하는 등, 파이썬 인터프리터의 설치 방식에 따라 달라집니다. 어떻게 정하든 이를 site-packages 디렉터리라고 부릅니다. 파이썬 인터프리터를 빌드할 때 경로가 결정되므로, 파이썬 인터프리터 별로 각자의 site-packages 디렉터리를 갖게 됩니다. (한 시스템에서 여러 파이썬 버전을 설치했을 때 pip 역시 pip2.7, pip3.6 등과 같이 버전 별로 명령어가 생기는 것도 같은 이유입니다.)기본적으로 sys.path 목록에는 맨 앞에 현재 위치(./), 뒤쪽에는 site-packages 경로가 들어있습니다. import를 하면 현재 위치에서 찾고, 없으면 site-packages를 찾아본다는 뜻입니다.표준 라이브러리의 distutils.core.setup() 함수는 라이브러리 파일들을 시스템의 site-packages 디렉터리에 복사해주는 함수입니다. 라이브러리 타르볼 파일 맨 바깥에는 이 함수를 이용해 라이브러리를 시스템 site-packages에 설치해주는 스크립트를 setup.py라는 파일명으로 포함하는 관례가 있었습니다. pip 같은 게 없던 때에는 라이브러리 타르볼을 받아서 푼 다음 python setup.py install 명령을 실행하는 것이 일반적인 라이브러리 설치법이었습니다. 지금도 pip는 *.whl 파일이 아닌 *.tar.gz/*.zip 파일인 패키지를 설치할 때 내부적으로 python setup.py install 스크립트를 실행합니다.참고로 이때 정립된 파이썬 패키징 표준은 리눅스에서 쓰이는 dpkg나 RPM 같은 일반적인 패키징 방식을 의식하며 만들어졌습니다.1 당시는 도커는 커녕 가상화 자체가 보편적이지 않던 때로, 한 시스템에 여러 애플리케이션을 함께 설치해서 쓰는 멀티테넌시 환경이 일반적이었기 때문입니다.workingenv파이썬으로 작성한 애플리케이션 여럿이 한 시스템에 설치되면 공통으로 의존하는 라이브러리의 버전을 결정하는 게 문제가 됩니다. A 애플리케이션은 foo >= 1.0.0, < 2>에 의존하고 B 애플리케이션은 foo >= 1.5.0에 의존하면 시스템에 설치할 수 있는 foo의 버전은 >= 1.5.0, < 2>으로 한정됩니다. 만약 C 애플리케이션을 설치하려는데 foo > 2.0.0에 의존한다면, A나 C 중 하나는 포기해야 합니다.시스템에 파이썬 애플리케이션을 단 하나만 설치한다 해도, 설치하는데 시스템 관리자 권한이 필요하다는 것도 문제였습니다. 일반적으로 site-packages 디렉터리는 시스템 관리자만 수정할 수 있고 나머지는 읽기만 가능한 /usr 아래 어딘가로 정해졌기 때문입니다. 이를 우회하려고 사용자가 시스템에 설치된 파이썬 인터프리터를 쓰지 않고 직접 파이썬 인터프리터를 빌드해서 사용하는 편법도 쓰였습니다.이런 문제를 해결하기 위해, 애플리케이션·프로젝트마다 별도의 site-packages 디렉터리를 두는 방식이 제안됐습니다. 나중에 virtualenv을 만들게 되는 이안 비킹이 그 전신인 workingenv를 만들어 이 아이디어를 실현했습니다. 현재의 virtualenv 사용 방식은 workingenv에서 만들어진 것입니다.애플리케이션마다 별도의 “환경”(env)을 만듭니다.애플리케이션을 실행하기 전에 우선 그 “환경”을 “활성화”(. bin/activate 또는 Scripts\activate.bat)합니다.workingenv가 만들어주는 활성화 스크립트는 PATH와 PYTHONPATH 환경 변수를 재정의하여 시스템에 설치된 파이썬 인터프리터의 실행 바이너리 디렉터리 및 site-packages 디렉터리를 가리키는 대신, “환경” 내의 bin/ 및 site-packages 디렉터리를 바라보도록 해줍니다. 이안 비킹은 이렇게 분리된 실행 파일들(bin/)과 site-packages 등을 묶어서 “환경”이라고 명명했는데, workingenv 이후로 파이썬 패키징 및 배포 분야에서 이 용어가 정착됩니다.최근에 만들어진 신생 언어의 패키지 관리자는 대부분 파이썬과 달리 애플리케이션·프로젝트마다 별도의 환경을 두고 설치되는 경우가 많습니다. 예를 들어 npm은 -g 옵션을 일부러 켜지 않는 한 현재 디렉터리를 기준으로 ./node_modules 디렉터리에 라이브러리를 설치하게 되어 있고, 별도의 “활성화” 없이도 노드 인터프리터가 해당 경로에서 라이브러리를 찾습니다. 하지만 파이썬의 패키징 표준은 앞서 언급한 것처럼 멀티테넌시 환경이 일반적이었던 시대에 만들어졌고, 또 많은 라이브러리가 실행 파일도 함께 제공하기 때문에2 PYTHONPATH 뿐만 아니라 PATH 환경 변수도 재정의해야 해서 activate 과정이 필요합니다.workingenv는 파이썬 웹 프로그래머 사이에서 빠르게 퍼지기 시작했습니다. 웹 애플리케이션은 정통적인 CLI 및 GUI 애플리케이션과 달리 FHS 표준 같은 것에 크게 구애될 필요가 없었고, 웹 애플리케이션의 배포도 점차 가상화 기술을 통해 완전히 격리된 시스템에 설치되는 식으로 보안 문제에서 많이 자유로워졌기 때문입니다.무엇보다 workingenv는 프로그래머가 여러 프로젝트를 동시에 작업하는 경우 골치 아팠던 라이브러리 버전 충돌 문제를 우회했기 때문에, 배포 도구보다는 개발 도구로 정착되는 면이 컸습니다.virtualenv이안 비킹은 PYTHONPATH를 조작하여 별도의 site-packages 공간을 두는 workingenv의 방식이 복잡하게 패키징된 기존 라이브러리 및 프로젝트에서 호환되지 않는 문제로 골머리를 썩이다, 아예 PYTHONPATH를 이용하지 않는 방식으로 새 도구를 만듭니다.새로운 방식은 아예 파이썬 인터프리터 실행 바이너리를 복사한 뒤, sys.path 기본값에 박힌 시스템 site-packages 경로를 환경 내 site-packages 경로로 바꿔버리는 것이었습니다. 이러한 동작 원리의 차이는 이용자 입장에서 크게 중요한 것은 아닙니다.하여튼 이안 비킹은 virtualenv라는 이름으로 새 도구를 만들었고, workingenv를 빠르게 대체했습니다.virtualenvwrapper앞서 언급한 것처럼, workingenv와 그 후계자인 virtualenv는 저자의 의도와 무관하게 애플리케이션 배포보다는 개발 용도로 더 널리 쓰입니다. 파이썬 프로그래머가 새로운 프로젝트를 시작할 때는 항상 “환경”도 생성합니다. 또 개발을 시작할 때마다 “활성화” 과정도 거칩니다. 너무나 반복적이기 때문에 당연히 이를 자동화하는 도구도 만들어졌습니다. virtualenvwrapper는 바로 그런 목적으로 만들어진 bash/zsh/fish 스크립트 모음입니다.여러 단축 명령을 제공하지만, 핵심 기능은 다음의 두 가지입니다.A라는 프로젝트 작업을 시작할 때마다 cd ~/projects/a; . .venv/bin/activate라고 쳐줘야 했던 것을 workon a 명령으로 줄여줍니다.프로젝트 디렉터리마다 .venv/ 또는 .env/ 등의 이름으로 환경 디렉터리를 생성해두고 버전 관리 시스템에서는 제외되도록 .gitignore 목록에 해당 디렉터리를 넣었어야 했습니다. 예를 들어 ~/projects/a/.venv/, ~/projects/b/.venv/ 같은 식이었습니다.virtualenvwrapper를 쓰면 환경 디렉터리들을 일정한 위치로 모아줍니다. 위치는 기본값이 없으며 virtualenvwrapper 설치할 때 WORKON_HOME 환경 변수를 통해 입맛대로 정할 수 있습니다. 예를 들어 WORKON_HOME을 ~/.virtualenvs/ 디렉터리로 정했다면, 프로젝트별 환경은 ~/.virtualenvs/a/, ~/.virtualenvs/b/ 같은 식으로 저장됩니다.pyvenv파이썬 3.3부터는 virtualenv가 아예 파이썬에 내장됐습니다. 환경을 만드는 명령어는 virtualenv가 아닌 pyvenv로 좀 다르지만, 그 이후의 과정은 같습니다. 파이썬 3만 사용한다면 이제 virtualenv를 따로 설치할 필요가 없어진 것입니다.참고로 아래에서 설명할 pyenv와는 다른 도구입니다. 철자의 “v”에 주의해주세요.pyenv애플리케이션을 개발할 때는 하나의 파이썬 버전을 정하면 되지만, 라이브러리는 여러 파이썬 버전과 호환되어야 합니다. 그러다 보니 라이브러리 개발자는 여러 버전의 파이썬을 시스템에 동시에 설치할 필요가 있습니다. 데드스네이크스 PPA나 데드스네이크스 홈브루 탭 같은 것을 이용해서 설치할 수도 있지만, 보통은 pyenv를 많이 씁니다.pyenv는 동시에 여러 버전의 파이썬을 시스템에 설치해주며, 이렇게 설치된 파이썬은 시스템의 패키지 시스템(데비안·우분투의 APT나 맥OS의 홈브루 등)을 통해 설치되는 것이 아니라, pyenv가 다운로드와 빌드 및 설치를 직접 하여 별도로 관리합니다. 설치된 파이썬들은 PEP 394에 따라 일정한 형식으로 이름지어진 명령어(예: python2.7, python3.6)로 실행할 수 있게 됩니다.또한, 여러 파이썬 버전 중에 하나의 시스템 기본 파이썬 버전도 선택 가능하며, 특정 프로젝트 디렉터리 안에서만 기본 파이썬의 버전이 달라지게 할 수도 있습니다.pyenv-virtualenvpyenv가 여러 파이썬 버전을 동시에 설치해주기는 하지만, 그렇다고 자동으로 site-packages가 프로젝트마다 격리되는 것은 아닙니다. 예를 들어 pyenv로 파이썬 3.6을 설치한 뒤, 파이썬 3.6으로 두 프로젝트를 한 시스템에서 개발할 경우 두 프로젝트는 시스템 site-packages를 함께 쓰게 됩니다.따라서 pyenv를 쓰더라도 virtualenv는 따로 써야 하는데, 따로 사용할 수도 있지만 pyenv-virtualenv를 쓰면 pyenv virtualenv 명령으로 프로젝트에 쓸 파이썬 버전 지정과 가상 환경 생성을 한 번에 할 수 있게 됩니다.비슷하게 pyenv와 virtualenvwrapper를 통합해주는 pyenv-virtualenvwrapper 같은 도구도 있습니다.마치며여러 파이썬 개발 환경 관리 도구를 소개했지만, 여기 있는 모든 도구를 꼭 써야 하는 것도 아니고, 가장 최근에 나온 도구로 하루빨리 갈아타야 하는 것도 아닙니다. 글을 쓴 저 자신도 pyenv 같은 도구가 나온 지 몇 년이나 지났고 주변에서 쓰는 사람이 많음에도 쓰지 않고 있습니다. virtualenvwrapper를 대체하는 Pipenv 같은 실험적인 방식3도 생겨나고 있지만, 어느 쪽이든 동시에 여러 파이썬 프로젝트를 작업하는 사람이 아니라면 굳이 쓸 필요가 없는 도구입니다. 각자의 용도에 따라 필요한 수준의 도구를 이용하면 됩니다. 2017년 10월 현재, 아래의 지침으로 정리할 수 있겠습니다.파이썬 프로그래머가 아니지만, 파이썬 애플리케이션을 설치해서 이용합니다.시스템에서 제공하는 패키지 관리자(APT나 홈브루 등)를 통해 애플리케이션을 설치하세요.파이썬 프로그래머가 아니지만, 파이썬 애플리케이션을 유난히 많이 이용합니다.pipsi를 이용해 파이썬 애플리케이션을 설치하는 것을 권합니다.파이썬 프로그래머이고, 하나의 애플리케이션을 개발합니다.파이썬 3.3 이상을 이용할 경우 pyvenv로 개발 환경을 만들어서 개발하세요. 그 이전의 파이썬 버전을 이용할 경우 virtualenv를 활용하세요.파이썬 프로그래머이고, 여러 애플리케이션을 개발합니다.virtualenvwrapper를 활용하세요.파이썬 프로그래머이고, 여러 애플리케이션을 다양한 파이썬 버전으로 개발합니다.pyenv-virtualenvwrapper를 활용하세요.파이썬 프로그래머이고, 라이브러리를 개발합니다.pyenv와 tox를 활용하세요.파이썬으로 만든 애플리케이션을 distutils를 통해 패키징한 뒤, RPM 기반의 리눅스 배포본 용으로 python setup.py bdist_rpm 명령을 통해 *.rpm 파일을 제공하기도 했습니다. 이를 통해 애플리케이션을 설치할 경우, 각 파일들은 리눅스 FHS 표준과 해당 시스템 설정에 따라 흩어지게 됩니다. ↩예를 들어 파이썬에서 가장 많이 쓰이는 국제화 라이브러리인 바벨은 pybabel 명령어를, 구문 강조 라이브러리인 파이그먼츠는 pygmentize 명령어를, 장고는 django-admin 명령어를 제공합니다. ↩저는 2017년 4월에 한 번 써보았으나, 아직은 실무에서 쓰기에는 이르다는 결론을 내렸습니다. 이에 관한 그때의 제 감상은 별도의 글로 다루었습니다. ↩#스포카 #파이썬 #개발팀 #개발자 #인사이트 #후기 #일지

기업문화 엿볼 때, 더팀스

로그인

/