스토리 홈

인터뷰

피드

뉴스

조회수 2353

[H2W@NL] 로봇과 디자인

디자인이란 단어가 이제는 어디서나 익숙합니다. 그만큼 디자인의 정의와 역할은 다양한 영역에서 분화되어 있기도 합니다. 네이버랩스에서는 로봇이라는 대상에 대해 여러 분야의 디자인이 진행되고, 종국에는 통합됩니다. 하나의 로봇으로 이어지는, 로봇시스템/UX/ID 각각의 디자인에 대해 물었습니다.Q. 어떤 ‘디자인’을 하나요?로봇의 메커니즘에서 인터페이스까지, 최적의 시스템을 디자인(김인혁|Robot) 제가 하는 디자인은, 시스템 디자인이라고 말할 수 있습니다. 아, 물론 제가 속한 Robot팀엔 더 많은 디자인 과정들이 있어요. 로봇의 기구, 전장, SW 등 각각의 영역에서도 디자인 과정이 존재합니다. 저는 그 중에서 주로 시스템 제어 엔지니어로서의 디자인을 이야기할 수 있겠네요.사실 시스템이란 말이 좀 모호하죠. 과학분야에선 이렇게 정의할 수 있습니다. 구성 요소들이 내외부와 경계를 가진 상태에서 각 요소 간에 긴밀한 상호작용을 하는 집합체. 쉽게 설명하고 싶었는데, 여전히 어렵긴 하네요.로봇은 단순한 기능을 구현할 때에도 복잡한 요소들이 동시에 작동합니다. 메커니즘, 동력원, 에너지원, 제어기와 인터페이스 등. 이들이 서로 잘 연결되어 작동할 수 있어야 합니다. 이를 위한 최적의 시스템을 구성하는 디자인이라 하겠습니다.로봇, 그리고 사람, 그 사이에서의 상호작용(김석태|UX) UX의 입장에서는 HRI (human-robot interaction) 디자인이라고 정의할 수 있습니다. 앱이나 웹 등의 화면 기반 인터페이스와는 조건이 다른데요. 물리 공간에서 로봇이 동작한다는 점이 그렇습니다. 주변 사물이나 사람을 로봇이 인식하는 순간처럼 다양한 상황에서 로봇이 어떻게 동작하거나 반응해야 하는지, 그리고 로봇을 활용한 서비스는 다른 디바이스나 앱과 달리 어떤 방식을 통해 제공되어야 더욱 직관적으로 사람과 상호작용이 가능한지 등을 디자인하고 있습니다.기술만큼, 인상과 매력도 중요하다(김승우|ID) 로봇의 외관도 중요합니다. 로봇은 여전히 일반인들에겐 생소합니다. 이들에게 로봇은 흥미로움을 일으키는 대상일 수도 있지만, 마주치는 순간 기피하고 싶은 이질적 존재일 수도 있어요. 그래서 외관을 통해 느끼는 인상과 그 효과에 대해 세심한 접근을 하고 있습니다. 로봇 서비스가 보편화되지 않은 시점에서는, 사람들이 기대하는 로봇다운 매력을 잘 체감할 수 있게 하는 것도 로봇 대중화를 위해 중요한 역할인 것 같습니다.“기술이 지닌 본래의 가치를 더욱 잘 느낄 수 있도록 전달하는 것, 그것도 디자인의 역할입니다.” Q. 어떤 프로세스로 작업하나요?단순한 목표를 위해 필요한 복잡한 과정들(김인혁|Robot) 기본 목표라고 한다면, 일단 요구 스펙을 잘 만족하는 시스템을 설계하는 것입니다. 현실은 아주 복잡하죠. 요소들이 워낙 다양하기 때문인데요. PoC, 성능 테스트 등 평가 과정을 거치면 조정해야 할 것들이 많아집니다. 아예 새로 개발을 할지를 고민하게 될 때도 있는데, 참고할만한 레퍼런스가 없을 때는 참 어려워집니다. 이럴 때는 원론적으로 풀 수밖에 없죠. 공학적인 문제부터 정의하고 문제 해결을 위한 방법론을 탐색합니다. 이런 일들이 수없이 많지만, 시스템 디자인의 일반적인 프로세스이기도 합니다. 목표는 단순하지만, 과정은 현란하죠.산업을 이해하면 목표가 보이고, 사람을 이해하면 디테일이 보인다(김석태|UX) 앞서 말씀드린 것처럼, 서비스 로봇은 다른 앱/웹 서비스와 상황이 많이 다르죠. 앱이라면 프로토타이핑과 검증 과정을 상당히 빠른 주기로 반복할 수 있는데, 로봇은 그런 면에서는 제약이 있습니다.일단 로봇 서비스 산업에 대한 이해부터 시작하였습니다. 그간 어떤 로봇들이 어떤 서비스를 했고, 학계에서는 어떤 연구들이 선행 되었는지를 꼼꼼히 연구했습니다. 그리고 나니 목표 수준이 좀 더 명확해지고, 시나리오를 구체화할 수 있었습니다.중요한 건 역시 사람에 대한 이해입니다. 실제로 유용하다고 느낄까? 어떤 니즈가 여전히 숨어있을까? 로봇이 대신 해 주었을 때 더 가치 있는 것은? 이런 질문에 대한 답을 찾은 후 다음 숙제가 이어집니다. 사람들의 삶 속으로 이질감없이 자연스럽게 녹아 들기 위한 인터랙션입니다. 인터랙션 상황들을 정의하는 일부터가 시작이고, 어떤 이슈나 문제가 있는지를 찾아냅니다. 가장 단순하면서도 자연스러운 해결 방법은 무엇일지 실험을 통해 검증합니다. 이 과정에서 굉장히 많은 디테일들이 새롭게 발견됩니다.기술에 대한 이해도 중요합니다. 예를 들어 최근 AROUND C에는 디자이너가 가장 이상적인 로봇의 속도 및 이동 경로를 선택하면, 이를 바탕으로 딥러닝 기술을 적용해 최적화된 자율주행을 할 수 있는 기술이 적용되어 있습니다. 지켜보는 사람이 언제 안정감을 느끼는지, 로봇과 사람이 교차할 때엔 상대 속도나 동선을 어떻게 할지, 공간상의 제약이 복합적으로 작용하면 어떤 기준을 세워야 할지 등등. 수많은 요소들 사이에서 최적의 인터랙션 디자인을 설계해야 합니다. 이런 사소해보이는 사용자 경험이 로봇 서비스 과정에서 뜻밖의 감동까지도 전달할 수 있다고 생각합니다.“우리가 추구하는 기본 방향은, 실용적이면서도 사람을 배려하는 로봇입니다. 문제 상황을 분석해 나온 다양한 해결책 중에, 사람이 직관적으로 파악할 수 있는 방법을 택합니다.” 최근에는 AROUND C에서는 gaze, sound, lighting을 통한 비언어적 커뮤니케이션을 테스트하고 있습니다. 왜 굳이 로봇이 직접 말하게 하지 않고 비언어적 커뮤니케이션을 연구할까요? 그게 서비스 시나리오 상에서 더 직관적이며, 심지어 더 똑똑해 보이기 때문입니다. 스타워즈의 R2D2와 C3PO를 떠올리시면 됩니다. 점과 선을 활용해 가장 로봇다운 눈을 디자인 했고, 이를 통해 다양한 상태 정보를 사람에게 직관적으로 전달하고자 했습니다.전체의 통일감과 개별 디자인의 완성도라는 두개의 과녁(김승우|ID) 제가 공을 들이는 건 전체 제품의 통일감과, 개별 디자인의 완성도입니다. 네이버랩스에서 그간 공개했던 제품들은 작은 디바이스부터 중형 로봇, 대형 차량 센서박스에 이르기까지 다양한 카테고리에 걸쳐 있습니다. 디자인의 토대가 되는 조형 요소인 제품의 크기와 형태, 구조가 상이하다 보니 각각의 형태와 구조적 특성을 고려하면서도 전체 제품에 통일감이 느껴지도록 하는데 많은 노력을 기울여 왔습니다. 기업에서 일관된 메시지를 전달하는 것은 그 기업을 신뢰할 수 있는가에 대한 중요한 가치라고 생각해요. 디자인도 마찬가지입니다. 네이버랩스라는 기술 기업에서 전달해야 할 가치는 ‘정밀함’과 ‘단단함’이라고 생각했고, 로봇을 포함한 전체 제품에서 이 키워드들을 담은 일관된 디자인 언어가 느껴질 수 있도록 조형의 기본이 되는 면, 면의 기본이 되는 선을 세밀하게 다듬으며 디자인했습니다.또한 개별 디자인의 완성도를 위해 밸런스와 디테일을 중요하게 생각합니다. 로봇은 움직이기 때문에 다양한 각도에서 바라보게 되고, 어느 방향에서 보아도 완성도 높은 밸런스가 특히 중요합니다. 잘 안보이는 곳의 디테일도 쉽게 드러나기 때문에 세밀한 디테일을 놓치지 않기 위해 노력하고요.로봇의 경우엔 일반인들의 디자인 완성도에 대한 기대 수준이 더 높은 편입니다. 이런 기대를 충족시키는 동시에 기술적인 요구도 충족해야 합니다. 예를 들어, AMBIDEX의 전체 디자인 균형을 잡는 과정에서 팔의 부피를 늘리는 선택이 필요했는데, 동시에 무게는 가볍게 유지해야만 로봇의 기능을 100% 발휘할 수 있었습니다. 경량성이 AMBIDEX라는 로봇 팔 기술의 핵심 특성이기 때문이죠. 외관 부피를 늘려 디자인 밸런스를 최적으로 잡으면서도 1g을 더 줄이기 위해 질량을 체크하며 표면과 두께를 조정하고, 강성을 높이는 내부 구조를 추가하며 문제를 해결했습니다. 이런 디자인 과정을 거쳤기에 외관에서도 내부의 단단함과 견고함이 배어 나온다고 생각합니다.Q. 서로 어떻게 협업을 하나요?어차피 목표는 하나(김인혁|Robot) 각기 다른 분야의 전문가들이 협업할 때의 견해차이는 프로세스를 통해 해결되어야 한다고 생각해요. 그게 아니라 의견의 일방향성이 생기면 그건 곤란하죠. 저는 각 분야의 선/후행을 두지 않고 초기부터 과정 전반에 걸쳐 계속 공유하고 의견을 나누며 서로의 수용성을 늘리는 것이 아주 중요하다고 생각해요.“한 영역의 전문가가 모든 결정을 하고 다른 분야의 전문가는 일방적으로 종속되어야 한다면, 그건 문제가 있습니다. 선행과 후행을 나누면 안됩니다. 초기부터 같이 고민하고 대화하고 함께 풀어야 합니다.” (김석태|UX) 저도 커뮤니케이션이 협업 과제를 빠르게 가속하는 가장 중요한 요소라고 봅니다. 다양한 관점에서 의견을 나누는 건 정말 필요해요. 그 과정 없이 한번에 이상적인 솔루션을 바라는 건 무리입니다. 지금 진행 중인 1784 프로젝트 역시 이러한 소통을 원활히 이어가고 있기 때문에 좋은 협업이 진행되고 있고요.(김승우|ID) 차이란 것은 자연스럽죠. 좋은 결과를 위해 필수적입니다. 궁극적인 목표를 달성하고자 한다는 동질감을 느끼기 때문에 서로의 진정성을 확인허는 과정이기도 합니다. 어떤 디자인이라도 많은 협의와 조율이 전제됩니다. 하나의 입장에 매몰되어 있는지 되돌아보기도 하고, 전체를 바라보는 기회로 삼기도 합니다.Q. 앞으로의 도전은?(김인혁|Robot) 우리의 목표는 사람에게 도움이 되는 로봇을 개발하는 것입니다. 단순하죠. 이를 기술 관점에서 고민하고, 가장 적합한 답을 찾고, 그 답을 세상과 공유하고 싶습니다. 그것이 제가 맡은 역할이라 생각하고요. 그 역할을 잘 할 수 있도록 연구개발자로서도, 프로젝트를 리드하고 완성하는 실무자로서도 역량에 깊이를 더하고 싶습니다.새로운 스탠다드라는 설레는 도전(김석태|UX) 이제는 실험실이나 전시장이 아니라, 우리가 실제 살아가는 공간으로 로봇이 들어옵니다. 그런 시대에 도달했습니다. UX디자이너로서는 완전히 새로운 기회이자 설레는 도전입니다. 한때 모바일이란 세상으로 패러다임이 이동했던 시기가 있었죠. 이제는 가상 세계에서 제공하던 다양한 서비스와 기술들이 일상의 물리 공간으로 다시 돌아올 것입니다. 서비스 로봇을 통해 이 분야의 새로운 스탠다드를 만들고 싶습니다.(김승우|ID) 네이버랩스에서는 늘 흥미로운 프로젝트들이 진행되어 왔습니다. 그 중에서도 로봇 디자인은, 다른 어느 로봇보다도 디자인 완성도가 높으며, 동시에 기능적 가치를 충실히 구현하는 것을 목표로 진행해 왔습니다. 게다가 로봇은 외관 그 자체가 하나의 강렬한 인상이자 브랜드 체험 요소가 되기 때문에 더욱 큰 책임감을 느끼고 있습니다. 네이버랩스는 기술이 강점인 회사입니다. 동시에 디자인 또한 우리의 탁월한 강점입니다. 이를 위해 앞으로도 노력하려고 합니다. 네이버랩스의 인재상은 passionate self-motivated team player입니다. 어쩌면 '자기주도적 팀플레이어'라는 말은 형용모순(形容矛盾)일 지도 모릅니다. 하지만 우린 계속 시도했고, 문화는 계속 쌓여갑니다. 다양한 분야의 전문가들이 경계없이 협력하고 스스로 결정하며 함께 도전하는 곳의 이야기를 전합니다. How to work at NAVER LABSH2W@NL 시리즈 전체보기
조회수 1074

어제의 실수는 오늘의 노하우!

Overview서비스되는 프로젝트에 첫 커밋(Commit)했던 순간이 아직도 생생합니다. 직원이 10명 남짓이던 시절, 특정 데이터를 삭제할 때나 쓰던 관리자 페이지였는데요. 당시엔 MVC Pattern, Transaction 등 아무것도 몰랐기 때문에 실수를 반복했습니다. (팀장님으로부터 피드백도 많이 받았죠.) 어떤 실수였는지 궁금하시죠? 오늘은 두 번 다시 겪고 싶지 않은 실수들과 깨달은 몇 가지 이야기와 개발자가 꼭 지켜야할 것을 소개하겠습니다. 사용자를 생각하는 마음예전에는 로직을 짤 때 실패하는 케이스를 깊게 생각하지 않았습니다. 왜냐하면 “나는 기능을 만들고, 사용자는 내가 만든 기능을 쓴다.”고 생각했기 때문입니다. 요구 사항대로 동작하게 만들고, 예외 케이스는 사용자의 책임으로 돌렸습니다. 하지만 이런 태도로 개발하면 UI/UX는 발전할 수 없고, 서비스도 개선될 수 없으며, 사용자의 불만만 생긴다는 걸 곧 알게 되었죠. 작년 이맘때쯤 브랜디 앱에 진열될 상품 관리 페이지를 개발했습니다. 요건에 기재된 내용을 요약하면 아래와 같았습니다.제시된 요건등록 가능한 상품의 개수는 ‘무제한’이다.하나의 페이지에 여러 구좌를 관리하는 영역이 들어갔으면 좋겠다.상품 조회 화면에는 ‘누적 판매량’과 ‘7일 판매량’ 항목이 추가되어야 한다.우선 ‘무제한’이라는 단어에 각 관리 영역마다 max-height를 지정했는데요. 여러 관리 영역이 하나의 페이지에 들어가더라도 스크롤을 많이 하지 않아도 되게 작업했습니다. 이뿐만이 아닙니다. 중복된 상품을 등록할 수도 있기 때문에 그것에 대한 유효성도 추가했죠. 하지만 막상 프로덕션(production)에 배포되니 직원들의 피드백이 쏟아졌습니다.“상품을 등록하고 다시 관리 페이지에 진입하려니 시간이 오래 걸려요.”“상품이 중복됐다고 alert이 뜨는데 어떤 상품이 겹치는지 알 수는 없나요? 혹시… 일일이 찾아야 해요?” 2)“상품 setting 후에 등록을 했는데 다시 보니 안 되어있어요!”“아뿔싸, ’무제한’이라는 단어를 보고 max-height 값만 떠올리다니!” 드러난 이슈들을 수정하면서 반성하고 또 반성했습니다. 등록된 상품들을 가져와서 페이지에 렌더링(rendering)할 때, 상품 수가 많을수록 뷰 페이지의 로딩 속도는 느려진다는 걸 예측하지 않았습니다. 심지어 하나의 페이지에 여러 구좌를 관리할 수 있도록 개발했으니, 불러와야 할 상품은 수백, 수천 개였을 겁니다. 직원들은 하염없이 페이지만 바라보며 불만을 터트릴 수밖에 없었고요. 이후엔 페이지에 진입하자마자 상품 목록을 가져오지 않고, 특정 버튼을 눌렀을 때 ajax로 상품을 로딩하는 방식으로 개선했습니다.당시 개발했던 진열 관리 화면상품 등록이 잘 안 된다는 이슈는 로컬(local) 및 스테이징(staging) 서버에서 재현되지 않아 고개를 갸웃거렸는데요. 프로덕션(production) 정보를 보고 나서야 원인을 잡을 수 있었습니다. ajax를 이용해 POST로 전송할 수 있는 array의 최대 사이즈가 정해져 있다는 걸 알게 된 것이죠.1) 결국 JSON 형태로 바꾸어 데이터를 전송하고, 서버사이드에서 배열을 다시 변환해 로직을 수행하도록 개선했습니다. 팀장님의 질문도 기억에 남습니다. 팀장님은 단호하게 물었죠.“쿼리 돌아가는 건 확인했어?”일정이 급급하다는 이유로 쿼리를 확인하는 과정을 간과했습니다. 데이터는 당연히 0건으로 나왔지만 조건에 부합하는 데이터가 없어서인지, 잘못된 질의 때문인지는 의심하지 않았던 것이죠. 팀장님은 말했습니다.“네가 자꾸 실수하면 사용자는 우리 시스템을 신뢰할 수 없을 거야.”PRODUCT_REGIST_DATETIME BETWEEN NOW() AND NOW() - 7 나 : 7일동안 등록된 상품 데이터를 가져와주세요.데이터베이스 : …???주위를 관심 있게 둘러보는 눈지난 번에 쓴 신입개발자를 위한 코드의 정석을 보면 ‘모든 개발조직은 좋은 품질의 소프트웨어를 개발할 수 있는 개발자를 원한다’는 문장이 있습니다. 좋은 품질과 가치 있는 서비스를 만드는 건 개발자가 당연히 가져야 할 책임과 소신입니다. 서비스에 대한 이해도 어느 정도 필요하고요. 그렇지 않으면 엉뚱한 서비스가 나옵니다.재작년, 브랜디 커머스 웹 1.0 버전을 개발했을 땐 e-commerce에 대한 이해도가 거의 없었습니다. 유사한 서비스들의 레퍼런스를 진행하고 개발을 시작해야 했는데 그저 상상력에 의존한 채 UI/UX 개발을 진행했었습니다. 그때 느꼈던 걸 몇 가지 정리해보겠습니다. 유사한 서비스를 적극적으로 사용하자!사람들은 많이 쓰는 서비스의 UI/UX에 익숙합니다. 그러므로 유명하면서도 비슷한 목적을 수행하는 다른 서비스들을 사용해보세요. 그 분야에 대한 센스가 무럭무럭 커질 겁니다. 더 나아가서는 사람들이 익숙하다고 느끼는 것보다 훨씬 더 편한 UI/UX를 떠올릴 수도 있겠지요!다른 개발자의 생각도 물어보자!같은 문장을 보고도 다르게 해석하듯, 같은 서비스를 개발하는 개발자들도 저마다 솔루션은 다릅니다. 자신은 괜찮다고 생각하더라도 다른 개발자에게 꼭 물어보세요. 미처 생각하지 못했던 의견들이 나올 수 있습니다. 즉, 많은 커뮤니케이션이 더 좋은 개발을 돕는 것이죠.개발하기 쉬운 서비스 말고, 사용자가 쓰기 편한 서비스로 만들자!일정에 쫓기면 당장 개발하기 편한 방법을 선호할 수도 있습니다. 개발자의 주관적인 판단이 UI/UX를 망칠 수 있는데도 말이죠. 실수는 자신이 만회해야 합니다. 눈앞의 것을 생각하지 말고, 사용자를 생각하며 개발합시다. 사용자가 기분 좋게 서비스를 이용하는 게 훨씬 뿌듯하잖아요. Conclusion무수한 실패담 중에 기억나는 몇 가지만 추렸습니다. 과거의 코드나 실수의 이력들을 글로 써 보니 ‘전부 내 경험이 되었구나’라는 생각이 듭니다. 지금 이 글을 읽고 있는 당신은 어떤 실수를 해보셨나요? 손해 보는 경험은 없습니다. 분명 언젠가는 도움이 될 거예요. 주석1)이 때문에 상품을 등록할 때, 스크립트에서 array로 담아 전송하면 데이터가 누락되어 제대로 등록되지 않거나 에러가 발생할 수 있는 결함이 있었다.2)중복된 상품을 화면에 표시해주는 기능은 여러 상황으로 인해 개선하지 못했다. 이후에는 발생하는 문제의 사유를 사용자에게 친절히 알려주어서 원하는 결과를 얻도록 힘쓰고 있다. 참고개발자는 개발만 잘하면 된다?사용자는 결코 실수하지 않는다글김우경 대리 | R&D 개발1팀[email protected]브랜디, 오직 예쁜 옷만#브랜디 #개발문화 #개발팀 #업무환경 #인사이트 #경험공유
조회수 1664

TDD(파이썬) : 테스트 잘하고 계신가요?

Overview반복적인 테스트에 지쳐가고 있던 무렵, TDD방법론을 접하게 되었습니다. TDD(Test Driven Development)는 테스트 주도적인 개발로 소스코드 작업 전에 테스트 코드를 먼저 작성해 소스수정에 대한 부담을 덜고 디버깅 시간을 줄일 수 있습니다. TDD 장점소스코드의 품질이 높다.재설계 및 디버깅 시간이 절감된다.TDD 단점단기적 코드일 경우 생산성이 떨어진다.실제 코드보다 테스트 케이스가 더 커질 수 있다.파이썬에서 TDD가 필요한 이유1) 파이썬에는 정적 타입 검사 기능이 없다. (Python 3.6 에서는 정적 타입 선언 가능)2) 동적언어이기 때문에 TDD를 하기에 적합하다.3) 파이썬은 간결성과 단순함으로 생산성이 높은 반면 런타임 오류가 발생할 수도 있다.4) 파이썬을 신뢰할 수 있는 유일한 방법은 테스트를 하는 것이다.파이썬 테스트 모듈 unittest이번 글에서는 unittest를 사용해 단위 테스트를 해보겠습니다. unittest는 이미 내장되어 있어 따로 설치하지 않아도 되는 표준 라이브러리입니다. 사용방법1) import unittest 2) unittest.TestCase 상속받는 하위 클래스 생성3) TestCase.assert 메소드를 사용하여 테스트 코드를 간략화4) unittest.main() 실행그럼 간단한 예제로 단위 테스트를 해보겠습니다.1.사칙연산 함수를 추가합니다.def add(a, b):     return a + b   def substract(a, b):     return a - b   def division(a, b):     return a / b   def multiply(a, b):     return a * b 2. unittest.TestCase 상속받아 테스트 클래스를 생성합니다. 아래는 각각의 함수 결과값을 비교해 텍스트를 출력하는 코드입니다.import unittest class TddTest(unittest.TestCase): def testAdd(self):         result = lib_calc.add(10, 20)         if result == 30:             print('testAdd OK')      def testSubstract(self):         result = lib_calc.substract(20, 30)          if result > 0:             boolval = True         else:             boolval = False if boolval == False:             print('testSubstract Error')      def testDivision(self):         try:             lib_calc.division(4, 0)         except Exception as e:             print(e)      def testMultiply(self):         result = lib_calc.multiply(10, 9)          if result < 100>             print('testMultiply Error') if __name__ == '__main__':     unittest.main() 3.결과: 해당 조건에 만족해 작성한 텍스트가 출력됩니다.이번에는 unittest에서 지원하는 TestCase.assert 메소드를 사용해 간략하게 소스를 수정해보겠습니다.TestCase.assert 메소드1) assertEqual(A, B, Msg) - A, B가 같은지 테스트2) assertNotEqual(A, B, Msg) - A, B가 다른지 테스트3) assertTrue(A, Msg) - A가 True인지 테스트4) assertFalse(A, Msg) - A가 False인지 테스트5) assertIs(A, B, Msg) - A, B가 동일한 객체인지 테스트6) assertIsNot(A, B, Msg) - A, B가 동일하지 않는 객체인지 테스트7) assertIsNone(A, Msg) - A가 None인지 테스트8) assertIsNotNone(A, Msg) - A가 Not None인지 테스트9) assertRaises(ZeroDivisionError, myCalc.add, 4, 0) - 특정 에러 확인1. TestCase.assert 메소드 사용TestCase.assert 메소드를 사용하여 에러를 발생시켜 보겠습니다.import unittest class TddTest(unittest.TestCase): def testAdd(self):         result = lib_calc.add(10, 20)          # 결과 값이 일치 여부 확인         self.assertEqual(result, 31)      def testSubstract(self):         result = lib_calc.substract(20, 10)          if result > 10:             boolval = True         else:             boolval = False # 결과 값이 True 여부 확인         self.assertTrue(boolval)      def testDivision(self):         # 결과 값이 ZeroDivisionError 예외 발생 여부 확인         self.assertRaises(ZeroDivisionError, lib_calc.division, 4, 1)      def testMultiply(self):         nonechk = True result = lib_calc.multiply(10, 9)          if result > 100:             nonechk = None # 결과 값이 None 여부 확인         self.assertIsNone(nonechk) if __name__ == '__main__':     unittest.main() 2. 결과1) 테스트가 실패해도 다른 테스트에 영향을 미치지 않음2) 실패한 위치와 이유를 알 수 있음다음으로 setUp(), tearDown() 메소드를 사용하여 반복적인 테스트 메소드 실행 전, 실행 후의 동작을 처리해보겠습니다.TestCase 메소드1) setUp() - TestCase클래스의 매 테스트 메소드가 실행 전 동작2) tearDown() - 매 테스트 메소드가 실행 후 동작 1. setUp(), tearDown() 메소드 사용- setUp() 메소드로 전역 변수에 값을 지정- tearDown() 메소드로 “ 결과 값 : ” 텍스트 출력import unittest class TddTest(unittest.TestCase): aa = 0     bb = 0     result = 0 # 매 테스트 메소드 실행 전 동작     def setUp(self):        self.aa = 10        self.bb = 20 def testAdd(self):         self.result = lib_calc.add(self.aa, self.bb)          # 결과 값이 일치 여부 확인         self.assertEqual(self.result, 31)      def testSubstract(self):         self.result = lib_calc.substract(self.aa, self.bb)          if self.result > 10:             boolval = True         else:             boolval = False # 결과 값이 True 여부 확인         self.assertTrue(boolval)      def testDivision(self):         # 결과 값이 ZeroDivisionError 예외 발생 여부 확인         self.assertRaises(ZeroDivisionError, lib_calc.division, 4, 1)      def testMultiply(self):         nonechk = True self.result = lib_calc.multiply(10, 9)          if self.result > 100:             nonechk = None # 결과 값이 None 여부 확인         self.assertIsNone(nonechk)      # 매 테스트 메소드 실행 후 동작     def tearDown(self):         print(' 결과 값 : ' + str(self.result))   if __name__ == '__main__':     unittest.main() 2. 결과- setUp() 메소드로 지정한 값으로 테스트를 수행 - tearDown() 메소드로 각각의 테스트 메소드 마다 “ 결과 값 : ” 텍스트 출력실행 명령어 여러 옵션을 사용하여 실행 결과를 출력해보겠습니다.실행 명령어python -m unittest discover [option]1. -v : 상세 결과 2. -f : 첫 번째 실패 또는 오류시 중단3. -s : 시작할 디렉토리4. -p : 테스트 파일과 일치하는 패턴5. -t : 프로젝트의 최상위 디렉토리1. 상세 결과테스트 메소드명 및 해당 클래스명 출력 2. 첫 번째 실패 또는 오류시 중단첫 번째 테스트에서 오류 발생하여 중단3. 여러 옵션 실행현재경로 디렉토리 안에 tdd_test*.py 패턴에 속하는 모든 파일의 상세 결과Conclusion지금까지 파이썬에서 unittest 모듈을 이용한 테스트 코드를 작성했습니다. 처음에는 귀찮고 번거롭지만 테스트 코드를 먼저 작성하는 습관을 길러보세요. 분명 높은 품질의 소스코드를 만들 수 있을 겁니다!참고Python 테스트 시작하기파이썬 TDD 101글곽정섭 과장 | R&D 개발1팀[email protected]브랜디, 오직 예쁜 옷만#브랜디 #개발자 #개발팀 #인사이트 #경험공유 #파이썬 #Python
조회수 913

[맛있는 인터뷰 4] 잔디의 헬스보이, 안드로이드 개발자 Steve를 만나다

[맛있는 인터뷰] 잔디의 헬스보이, 안드로이드 개발자 Steve를 만나다                                         미소, 승리의 V, 로맨틱, 성공적                                       삶은 생각보다 심플한 것 같아요.                              인생은 결국 생각하는 대로 풀리게 되더라고요.                                     잔디에서 제 목표를 이뤄가고 있어요.                                      – Steve, 잔디 안드로이드 개발자편집자 주: 잔디에는 현재 40명 가까운 구성원들이 일본, 대만, 한국 오피스에서 일하고 있습니다. 국적, 학력, 경험이 모두 다른 멤버들. 이들이 어떤 스토리를 갖고 잔디에 합류했는지, 잔디에서 무슨 일을 하고 있는지 궁금해하시는 분들이 많았습니다.  이에 잔디 블로그에서는 매 주 1회 ‘맛있는 인터뷰’라는 인터뷰 시리즈로 기업용 사내 메신저 ‘잔디’를 만드는 사람들의 이야기를 다루고자 합니다. 인터뷰는 매 주 선정된 인터뷰어와 인터뷰이가 1시간 동안 점심을 함께 하며 다양한 이야기를 나누며 진행됩니다. 인터뷰이에 대해 궁금한 점은 댓글 혹은 이메일([email protected])을 통해 문의 부탁드립니다.오늘의 ‘맛있는 인터뷰’ 장소는 어디인가요?‘롱브레드’라는 빠니니집이에요. YB와 같이 버디런치할 때 갔었는데 맛있었어요. 강남이라는 위치 특성 상 보통 식당들이 혼잡한데 여긴 조용한 편이에요.                                       빠니니 앞에 우리는 겸손해진다.잔디 블로그가 유명해지면 그리되겠죠? 자기소개 좀 부탁드릴게요안녕하세요? 스타트업을 동경해 안정적인 삶을 뒤로 하고 잔디에 조인한 안드로이드 애플리케이션 개발 담당자 Steve입니다.안드로이드 개발 중에서 어떤 일을 맡고 계신가요?지금은 전체적인 부분을 다 하고 있어요. 안드로이드 쪽으로 가장 먼저 입사한 사람이라 요즘 들어오는 개발자분들 OJT도 하고, 주요 개발 포인트에도 열심히 참여하고 있습니다.그렇군요. 헬스 트레이너 자격증을 갖고 계신단 얘길 들었어요.사실 운동을 전문적으로 하려 그런 건 아니었고, 옷 맵시를 잘 살리고 싶어 운동을 시작했어요. 제가 과거에 개그 콘서트 ‘헬스보이’에 나오는 김수영 같았담 몸매였다면 믿기시겠어요? 인생의 암흑기였던 그 시절, 어떤 옷을 입어도 멋있지 않았어요. 딱 한 번이라도 좋으니 뭘 입어도 간지가 났으면 좋겠단 생각을 했어요. 그게 제 생활 습관을 바꾼 계기였어요.트레이너 자격증 따는 게 쉽지 않을 것 같아요트레이너 자격증 준비할 당시엔 장기적으로 꾸준히 운동했어요. 아침 6시에 일어나 운동하고 오전, 오후 일과를 보낸 뒤 오후 5시부터 다시 운동하고 11시에 자곤 했어요. 식단은 하루에 5끼를 한 가지 종류의 메뉴로 구성해 1년 동안 먹었는데요. 정말 힘들 때는 한 달에 한 번 피자를 먹기도 했습니다.참기 힘든 유혹의 순간이 있진 않았나요?음.. 실기 시험 일주일 전이었어요. 여긴 특이하게 짧은 바지만 입고 몸을 보여주는 테스트를 통과해야 필기 시험을 볼 수 있었는데요. 실기 시험 전 참석했던 친한 동기 생일에서 술을 마다하고 최대한 절제하고 있었어요. 근데 친구가 자기 생일인데 왜 안 마시냐 핀잔 아닌 핀잔을 주더라고요. 그 때 조금 마셨는데 순간 고삐가 풀리더라고요. 이후 3시간 동안 미친 듯이 술과 안주를 먹었어요. 정말 다행히 실기 시험에 통과했지만 그때 한번 제대로 이성을 잃었던 적이 있습니다.헬스를 하면서 얻은 수확이 있다면?1년 정도 운동을 하니 규칙적인 생활이 몸에 뱄어요. 언제, 무엇을 할지 계획을 세워 생활하다 보니 어떻게 하면 효율적으로 시간을 사용할 수 있을지 알게 되었는데요. 운동을 통해 스스로 인내하고 제어하는 방법을 그 때 다 배웠어요.그 습관이 업무에 도움이 되셨나요?업무 관련 이야기는 아니지만 잔디에 합류하기 전 이직 준비를 1년 넘게 했어요. 이직에 필요한 사항을 정리해 최선을 다해 준비해보자 마음먹었어요. 이때 운동을 통해 다진 규칙적인 생활 습관이 큰 도움이 되었는데요. 꼬박 1년 동안 밤낮을 가리지 않고 개발 공부에 매달렸어요. 덕분에 ‘함께 일해볼 생각이 없냐?’는 제의를 많이 받았어요.                                 일할 땐 진지 모드, 밥 먹을 땐 샤방 모드.그런 제의를 고사하고 잔디를 선택하신 이유가 있다면?몇 가지 이유가 있는데요. 스타트업에 계시는 다른 분들을 보고는 비전이 있는 곳으로의 이직을 결심했어요. 5년 차 엔지니어로서 1년이라는 시간을 가지고 승부수를 던진 거예요. ‘생각하면서 살면 생각한 대로 살지만, 살면서 생각하면 사는 대로 생각하게 된다.’는 말을 인상 깊게 봤어요. 이 말대로 실천하려고 노력해 온 게 시간이 지나니 확실히 남들과 차이가 커지더군요.  그래서 생각하면서 사는 게 얼마나 중요한지 알고 있어요. 그중에서도 직장은 하루에 큰 부분을 차지하니까 신중하게 직장을 선택하는 건 인생의 중요한 전환점이죠.잔디에서의 생활은 만족스러우세요?기대했던 모든 게 다 잔디에 있는 것 같아요. 업무에 대한 자율성과 책임감이 적절히 섞여 있어요. 일반 회사의 수직적 구조도, 팀장급 이상에게만 주어지는 의사 결정권도 잔디에선 찾아볼 수 없어요. 덕분에 다양한 시각과 방법으로 개발 업무를 할 수 있기 때문에 전 개인적으로 만족하며 일하고 있습니다.쉬는 날에는 보통 어떤 활동을 하세요?업무 관련 공부를 하거나 친구들을 만나곤 해요. 개인적으로 회사 근처에 사는 걸 선호해 현재 강남 쪽에 살고 있는데요. 덕분에 친구들과의 약속이 잦아졌어요. 약속이 없는 날에는 주로 혼자 공부하고 있어요.이전 인터뷰이인 Jay님이 오늘 인터뷰이에게 ‘좋은 프로덕트란 어떤 것인지’ 물어봐달라고 하셨는데요. 이 질문에 대한 Steve의 답변은?좋은 프로덕트란 ‘복잡한 설명이 없어도 모든 동작을 깔끔하게 작동할 수 있게 만드는 것이다’ 라고 정의하고 싶습니다. 이를 위해선 개발자들이 모든 프로세스를 다 자동화해야겠죠? 생각보다 매우 꼼꼼한 업무가 필요한 과정이라 개발자들에게는 스트레스가 될 수 있을 거에요. 하지만 이건 개발자의 몫이고 사용자에게는 ‘편리함’과 ‘익숙함’을 제공해야 한다고 생각합니다. 제품 사용을 위한 프로세스를 최대한 단순화시켜 사용자가 자신이 원하는 동작 이외의 행동에 대해 생각하지 않게 만드는 게 최고의 프로덕트인 것 같습니다.미리 준비하셨나요? 인상적인 답변이네요. 마지막으로 다음 인터뷰를 위한 릴레이 질문이 있으시다면?다음 인터뷰이 분에게 ‘일과 사랑 어느 쪽이 우선인지’ 꼭 물어봐 주셨으면 좋겠습니다. 보통 스타트업을 다니면 연애하기 힘들다고 하잖아요. 왠지 다음 분께서 어떤 대답을 하실지 궁금하네요.열정적인 Steve와의 인터뷰 이후 ‘잔디의 안드로이드 개발 부분은 걱정 없겠구나’ 란  생각을 하게 되었습니다. 앞으로도 잘 부탁해요 Steve! 다음 주 인터뷰도 많은 기대 부탁 드려요.#토스랩 #잔디 #JANDI #개발자 #앱개발자 #애플리케이션 #모바일 #팀원 #팀원소개 #팀원인터뷰 #인터뷰 #사내문화 #조직문화 #기업문화 #팀원자랑
조회수 2522

적절한 이벤트 데이터(Event Data) 추출하기

이번 칼럼에서는 프로세스 마이닝의 Input 요소인 이벤트 데이터에 대해 살펴보겠습니다. 이벤트 로그를 어떻게 얻고 프로세스 마이닝 분석이 가능하도록 어떻게 전처리를 할까요? 이벤트 로그는 SAP와 같은 ERP 시스템, 미들웨어, 금융 정보시스템, 사물인터넷 데이터 등 다양한 정보 소스에서 얻을 수 있습니다. 정보 소스는 어디에나 있으며 대부분 수많은 DB 시스템으로 구성되어 있기 때문에 문제는 어떤 데이터를 추출하고 어떻게 프로세스 마이닝에서 사용할 수 있는 이벤트 로그로 변환하느냐는 방법입니다. 아래 그림은 프로세스 마이닝에 필요한 데이터를 설명하는 개념 모델입니다. 각각의 케이스는 이벤트로 이루어져 있고, 이벤트는 여러 속성을 가질 수 있습니다. 원본 소스로부터 이와 같은 형태의 데이터를 추출하고 변환하는 방법이 필요합니다.[그림 1] 이벤트 로그 개념예를 들어 SAP에서 데이터를 추출하는 경우를 보겠습니다. SAP에는 수천 개의 테이블이 있고 여기에는 많은 이벤트 관련 정보가 있습니다. 정확한 데이터를 추출하려면 분석하고자 하는 프로세스가 무엇인지 정의하고 어디가 시작 위치인지 어디가 종료 위치인지 찾아야 합니다. 이러한 데이터 식별, 위치 지정이 제대로 되어야 적절한 이벤트 데이터 수집과 범위 선정이 가능합니다. 병원 데이터도 환자와 관련된 정보가 담긴 1,000개 이상의 테이블을 볼 수 있습니다. 병원 데이터를 분석하려면 마찬가지로 분석 프로세스를 정의하고 분석 범위와 이벤트 데이터 속성에 대해 정의해야 합니다. 이는 중요하지만 어려운 일입니다. 프로세스 마이닝을 위해 필요한 데이터는 여러 정보 시스템에 산재되어 있으며 수집할 수 있는 데이터의 종류와 양도 어마어마합니다.  근본적인 데이터 모델 구조를 이해하고 적합한 이벤트 데이터의 종류와 범위를 산정해야 하며 수집한 데이터를 하나의 테이블로 정리할 수 있어야 프로세스 마이닝을 위한 적절한 이벤트 로그 수집과 준비가 되는 것입니다.티켓 예약 데이터를 통해 데이터 추출과 이벤트 매핑을 살펴보겠습니다. 다음 그림에는 티켓, 예약, 공연, 지불, 고객과 같이 다양한 엔티티(Entity)가 있으며 이러한 엔티티는 관련된 이벤트 또는 액티비티를 가지고 있습니다.[그림 2] 티켓 예약 데이터베이스 구조데이터 분석을 위해 우리가 가장 먼저 결정해야 할 것은 프로세스 인스턴스, 즉 케이스가 무엇인가입니다. 우리가 티켓의 수명주기를 설명하는 모델을 알고 싶다면 티켓을 케이스로 설정하고 이에 해당하는 액티비티를 찾아야 합니다. 예약, 공연, 지불 등의 액티비티가 필요하며 여러 티켓이 동일한 예약 기록이나 지불 이벤트를 가지고 있을 수 있습니다. 따라서 여러 개의 다른 프로세스 인스턴스가 하나의 예약에 연결되어 있을 수 있습니다. 또한, 프로세스 모델이 예약에 대해 설명한다고 하면 다른 액티비티를 찾아야 합니다. 이러한 과정이 명확하거나 쉽지 않기 때문에 어려움이 있습니다. 하나의 예약에 5장의 티켓, 2번의 지불과 같이 여러 이벤트가 연결될 수 있습니다. 예약 취소와 같은 이벤트는 티켓, 공연, 예약 등 여러 엔티티에 영향을 미치게 됩니다. 따라서 엔티티 간의 단순 일대일 대응은 없으며 원하는 이벤트 로그를 얻기 위해서는 데이터 전처리가 필요합니다.케이스 선정과 매핑 문제 외에도 정확한 데이터 추출을 위해서는 고려해야 할 다양한 문제가 있습니다. 케이스나 이벤트가 기록되지 않는 데이터 누락이 발생할 수 있습니다. 실제 수행자가 아닌 다른 수행자가 기록되는 것과 같이 데이터가 정확하지 않을 수 있습니다. 원하는 데이터 레벨이 아닐 수도 있습니다. 예를 들어 개별 작업자에 대해 확인하고 싶은데 부서 레벨이 기록되어 있을 수 있습니다. 또 다른 문제는 관련성이 없는 데이터가 많아 분석 항목을 찾기 어려울 수 있습니다.지금까지 프로세스 마이닝의 이벤트 데이터 관련 문제를 검토하였습니다. 이러한 문제점을 염두에 두고 데이터를 추출해야 프로세스 마이닝 분석을 제대로 수행할 수 있습니다. 프로세스 마이닝 분석을 위한 로그 생성 가이드라인 (https://blog.naver.com/prodiscovery/221160671117) 칼럼을 참조하시면 데이터 추출 문제 해결에 대해 도움을 얻을 수 있습니다.#퍼즐데이터 #개발팀 #개발자 #개발후기 #인사이트
조회수 1750

스켈티인터뷰 / 스켈터랩스의 잡학다이너마이트 변규홍 님을 만나보세요:)

Editor. 스켈터랩스에서는 배경이 모두 다른 다양한 멤버들이 함께 모여 최고의 머신 인텔리전스 개발을 향해 힘껏 나아가고 있습니다. 스켈터랩스의 식구들, Skeltie를 소개하는 시간을 통해 우리의 일상과 혁신을 만들어가는 과정을 들어보세요! 스켈터랩스의 잡학다이너마이트 변규홍 님을 만나보세요:)PART1. About Skelter Labs사진1. 스켈터랩스의 소프트웨어 엔지니어, 변규홍 님Q. 간단한 자기소개를 부탁한다.A. 이름은 변규홍. 스켈터랩스에서 소프트웨어 엔지니어로 일하며, 컴퓨터에게 열심히 한국어를 가르치고 함께 배우고 있다. 대충 20년 전부터 컴퓨터 공부를 시작해서 컴퓨터 관련된 일이라면 사족을 못쓰는 덕후이기도 하다.Q. 현재 스켈터랩스에서 어떤 업무를 맡고있는가.A. 스켈터랩스의 인공지능 대화 엔진 개발 팀인 헤르메스(Hermes)에서 흔히 ‘챗봇’이라 부르는 인공지능 대화 엔진을 만들고 있다. 우리가 만드는 인공지능 대화 엔진은 ‘챗봇을 만들고자 하는 사람들이 누구나 쉽게 챗봇을 만들도록 돕는 편리한 사용'을 목표로 한다. 때문에 비개발자도 이해하기 쉽도록 효율적이고 간편한 UI와 구조로 개발하고 있다. 거기서 나는 어떻게 하면 컴퓨터가 사람이 하는 말을 더 잘 알아듣고 잘 대답할 수 있는지 연구하고 있다. 어떤 처리를 해야하는지, 언어의 어떤 패턴을 인식하는지 등 ‘자연어 처리(Natural Language Processing,NLP)’ 혹은 자연언어처리라고 불리는 기술 전반에 대한 연구를 진행하고 있다.Q. 자연어 처리라는 부분이 생소하다. 언어의 분석이나 처리에 대한 얘기를 더 해줄 수 있나.A. 챗봇 위주로 설명해 보자. 우리가 한국어 문장을 컴퓨터나 스마트폰에 입력할 때, 특히 채팅할 때는 문장의 변화가 심한 편이다. 띄어쓰기를 실수할 수도 있고 급식체같은 축약어를 사용하기도 한다. 같은 의도를 담은 문장이 아주 다르게 표현되는가 하면, 비슷한 문장이 어순이나 표현 한 두 가지만 바뀌어도 전혀 다른 뜻이 되기도 한다. 이러한 인간의 언어를 컴퓨터가 잘 알아들을 수 있도록 분석하고 처리하는 것이다. 입력된 문장에서 어떤 부분이 명사고 어떤 부분이 동사인지를 찾거나, 문장 속에서 어떤 형태소에 집중해야 하는지 분석한다. 그리고 은행 계좌나 전화번호처럼 규칙에 맞는 숫자가 다양하게 입력될 수 있는 경우를 찾아내기도 한다. 이런 과정을 거쳐 사람이 어떤 의도를 갖고 입력한 문장인지, 어떤 정보가 담겨있는지 식별해낼 수 있다.Q. 들어보니 기술에 대한 지식뿐만 아니라 언어학에 대한 조예가 필요한 분야로 보인다.A. 맞다. 이 분야를 전산학(컴퓨터공학)에서는 ‘자연언어처리’라고 하고 언어학에서는 ‘전산언어학(Computational Linguistics)’ 혹은 ‘계산언어학’이라고 한다. 학제 간 학문으로서의 성격이 강한 분야다. 초창기에는 언어학자들이 찾아낸 인간 언어의 구조, 규칙을 컴퓨터공학자 / 전산학자들이 프로그램으로 구현하는 연구가 많았다. 그러다가 애초의 예상보다 인간의 언어 구조가 훨씬 더 복잡하다는 것을 인식한 이후부터는 인간의 언어에서 규칙성을 찾는 과정도 통계적 방법 등을 통해 컴퓨터의 힘을 빌리게 되었다. 최근에는 요즘 화두인 머신러닝 기법을 적극적으로 적용하면서 연구 트렌드가 조금씩 바뀌고 있다. 다양한 규칙에 따라 문장을 분석하기보다, 빅데이터로 정리된 방대한 언어생활 자료를 컴퓨터 스스로 학습하여 문장 속에서 필요한 정보를 찾아내는 식으로의 전환이랄까. 하지만 여전히 좀 더 좋은 결과물을 내려면 언어학에 대한 지식과 규칙성에서 찾아낸 정보들이 필요한 것도 사실이다. 그래서 스켈터랩스에서는 규칙 기반 기법들과 머신러닝 기법 모두를 하이브리드 형태로 결합하여 대화 엔진을 개발하고 있다.Q. 아무리 다양한 형태로 기법을 결합하여 사용하더라도, 엔지니어가 언어학에 대해 연구하기는 쉽지 않아 보인다. 언어학을 별도로 공부하거나 혹은 언어학에 대한 관심을 이전부터 가지고 있었는지.A. 언어학이라기보다는 사실 나는 대학교에서 문학 동아리 활동을 오랫동안 했다. 자연스럽게 다양한 활동을 통해서 문학에 대한 얘기를 하다 보니 언어에 대한 관심도 꽤 높았던 것 같다. 무엇보다 구글코리아의 번역기 개발팀에서 인턴을 하며, 컴퓨터로 인간의 언어를 다루는 것이 굉장히 흥미롭다고 생각했고 꾸준히 관심을 이어왔다. Q. 구글 코리아 인턴 경험이 규홍님에게 여러모로 지대한 영향을 끼친 것으로 알고 있다. 그 얘기를 듣고 싶다.A. 대학에 처음 입학했을 때, 사실 실망감이 더 컸다. 합리적인 의사소통은 막혀있었고, 당시 학교의 학사제도 개편으로 인해 여러모로 시끄러운 상황이었다. 그러던 차에 마침 학교에 구글코리아에서 캠퍼스 리쿠르팅을 왔는데, 선배 중 한 명이 ‘왜 구글은 한국에서 인턴을 채용하지 않습니까' 라고 꽤나 당돌한 질문을 던졌다. 그렇게 구글 코리아 인턴 채용이 열려 면접 기회를 얻게 되었다. 당시 내 이력서에는 대학교 입학 후의 경력이라고는 연극동아리 공연 이력이 전부였기 때문에 일종의 두려움도 컸다. 하지만 일본어로 된 만화책을 컴퓨터에 넣으면 한국어로 번역된 만화책이 튀어나오게 하고, 컴파일(COMPILE) 사의 게임 중 미처 한국어로 번역되지 못한 게임들을 컴퓨터가 알아서 번역해 즐길 수 있게 하는, 그런 컴퓨터 프로그램을 직접 만들고 싶다는 꿈이 더 컸다. 마침 나의 면접관들도 구글 코리아 번역기 개발팀 분들이었다. 그렇게 구글 코리아 번역기 개발팀 인턴으로 입사하게 되었고, 그때의 경험이 나의 꿈의 실현 가능성에 대한 일종의 확신을 주었다.Q. 스켈터랩스에는 어떻게 입사하게 되었나A. 인턴 할 당시의 구글 코리아 사장이 지금 스켈터랩스 창업자, 조원규 대표님이다. 그리고 구글 코리아 면접관이었던 분이 우리 팀의 테크 리더(Tech Leader)를 맡고 있는 이충식 님이기도 하다. 작년 충식 님으로부터 어려운 문제를 풀어야 하는데 같이 한번 풀어보자는 연락을 받았다. 그 문제가 너무 어려울 것 같아서 답장을 망설이고 있었다. 그러다 이전 직장에 대한 염증과 새로운 일에 대한 호기심 등의 마음으로 충식님을 다시 만나 뵈니, 스켈터랩스에서 내가 어렸을 적 꿈꾸던 챗봇을 만들고 계셨다.Q.  스켈터랩스에서의 업무는 이전에 일했던 혹은 알고 있는 다른 개발자의 업무랑 어떻게 다른가. A. 사실 인공지능을 기반으로 한 스타트업에는 뛰어난 사람들이 많은 것 같다. 그러나 스켈터랩스가 다른 회사와 다른 점은 ‘내 동료가 누구인가'에 대한 인식의 범위가 조금 더 넓다는 점이다. 가령 디자이너는 디자이너끼리, 기획자들을 기획자끼리만 협력하고 부서에 따른 책임이나 업무 범위에 대해서 선을 긋는 문화가 흔히 있지 않나. 어떤 직장들은 수직적인 위계 구조를 강요하고 모든 걸 서류로 보고하게 만들기 때문에 일의 효율이 떨어지기도 한다. 그러나 스켈터랩스는 팀 간에, 직무 간에 서로의 업무 영역을 자로 재듯 규정하지 않고 넘나들며, 좀 더 활발한 소통을 추구한다. 덕분에 ‘하나의 공동체'라는 인식을 자연스럽게 가질 수 있다. 서로와 함께 일한다는 것에 대해 우리 스스로 가지는 자긍심도 대단하다. 사내에는 지인을 신규 입사자로 추천하는 채용 제도가 있는데, 그간 내가 일해왔던 회사 중 우리 회사만큼 열심히 지인들에게 추천하는 회사도 없었다. 사실 내가 일하는 회사가 별로면 친구에게 추천도 못 하지 않겠나. 그만큼 서로 만족하고, 자부심을 가지고 일한다는 것을 방증하는 면모인 것 같다.또한 스켈터랩스는 불필요한 서류 업무를 배제하는 대신, 아주 엄격한 코드 리뷰 시스템을 가지고 있다. 내가 과거에 근무했던 회사들은 많은 경우 상대적으로 지금 당장 작동하는 코드를 만들어 내는 것에 집중했다. 물론 이러한 방식이 때로는 실용적이다. 그러나 기능이 잘 작동되는지만 살피다 보니, 숨겨진 버그(Software Bug)가 남겨지고 이것이 뒤늦게 발견되어 더 큰 문제를 일으키기도 했다. 때로는 버그의 존재를 코드 작성자만이 알고 있기도 했다. 이렇듯 단기간 눈앞의 기능에만 집중하다가 코드의 품질이 저해되는 방식으로 개발이 진행되어 언젠가는 다시 수정해야 하는 일거리가 남겨지는 것을 ‘기술 부채(Technical Debt)’라고 부른다. 스켈터랩스의 코드 리뷰 문화는 사소한 영역까지 기술 부채를 남기지 않는다. 궁극적으로는 짧은 기간 완성도 높은 프로그램을 만들 수 있게 해주는 문화다. 엄격한 코드 리뷰가 가능한 것은 스켈터랩스의 개발자 역량이 높기 때문이기도 하다. 개발자들이 모두 기술에 대한 근본적인 이해와 최신 기술에 대한 섭렵을 두루 갖추었기에 타인이 작성한 코드도 바로 이해할 수 있다. 수준 높은 동료와 함께 일하며 피드백 받고 성장할 수 있다는 것은 회사의 굉장한 강점이라고 생각한다.사진2. 규홍 님과 다른 팀원 간의 코드 리뷰 모습.Q. 코드 리뷰 문화가 유익하기도 하지만, 일종의 압박감도 있을 것 같다. A. 압박감으로 여겨본 적은 없다. 한국 사회에서 개발자의 커리어에 대한 얘기를 나누다 보면 자연스럽게 ‘회사 일을 하다 보니 공부할 시간이 없어서 최신 기술을 알지 못해 뒤처진다.'라는 볼멘소리가 나온다. 그러나 스켈터랩스에서는 개발자 모두가 엄격한 코드리뷰를 거치는 과정에서 자연스럽게 더 나은 성능의 코드, 동료가 더 잘 이해할 수 있는 코드, 예상치 못한 예외 상황을 고려하는 코드를 작성하는 법을 실시간으로 배우게 되고, 때로는 그 과정에서 자연스럽게 코드 리뷰자가 제안하는 최신 기술에 대해 공부하고 습득하며 실력을 늘려나간다. 덕분에 코드 리뷰를 마치고 나면, 다음에 어떻게 해야 개선된 코드를 짤 수 있을지에 더 집중할 수 있고 실제로도 더 나은 코드를 작성할 수 있게 된다.물론 이런 문화가 신규 입사자로서는 다소 답답할 수 있을 것 같다. 나 또한 초반에는 ‘굳이 이런 디테일까지 다 잡아가며 이렇게 리뷰를 남겨야 할까'라는 생각을 해본 적도 있다. 그러나 스켈터랩스와 함께하는 시간이 점점 길어질수록, 꼼꼼한 리뷰로 기술 부채를 최소화하는 것이 팀 전체에도, 나의 성장에도 도움이 된다는 걸 느낀다.Q. 아무리 뛰어난 개발자가 있더라도 코드를 작성하는 사람은 한 명인데, 이를 함께 리뷰하다보면 작성된 코드를 이해하지 못하는 경우가 발생하지는 않나.A. 물론 그럴 수 있다. 때문에 스켈터랩스에서는 코드의 공동 소유, 공동 이해 개념을 깊이 이해하고, 잘 지킬 수 있게 만든다. 나만 이해할 수 있는 코드를 작성하면 장기적으로 다른 개발자들의 수정과 응용이 어려워진다. 그래서 스켈터랩스에서는 각 프로그래밍 언어별로 코딩 스타일 가이드를 준수할 것을 권장하고, 코드 리뷰 이전에도 가이드 준수 여부를 점검하는 도구를 활용하고 있다.Q. 스켈터랩스를 자랑한다면.A. 스켈터랩스는 아직 성장 중인, 그래서 ‘함께 만들어 갈 여지가 많은 회사'다. 나는 개인적으로 대기업부터 창업 초창기 단계의 스타트업까지 다양한 회사를 경험했는데, 이러한 과정에서 구성원 한 명 한 명이 회사의 문화와 기술적 원칙을 만들어가는데 얼마나 큰 영향을 주는지를 느꼈다. 스켈터랩스는 다양한 배경을 가진 개발자와 서로 영감을 주고받으며 함께 성장해가는 곳이다. 개발자 직군의 동료들과 비개발자 직군의 동료들이 끊임없이 소통하며 시행착오와 함께 점점 더 나은 기업문화를 만들어가고 있다. 그리고 실제로 이런 문화가 완성도 높은 프로그램을 만드는 데에 긍정적인 기여를 하고 있고, 현재는 성공 경험을 조금씩 안겨주고 있는 단계다. 역량 있는 인재들과 최신의 기술을 활용하여 새로운 결과물을 창출하는 것에 관심 있는 이들이라면 입사를 추천하고 싶다.#스켈터랩스 #사무실풍경 #업무환경 #사내복지 #기업문화 #개발팀 #팀원인터뷰 #팀원소개 #팀원자랑
조회수 984

디지털 노마드를 꿈꾸며

들어가며웹 서비스를 운영하는 여느 회사들처럼 엘리스의 엔지니어링 팀도 ‘프론트엔드’ 팀과 ‘백엔드’ 팀으로 이루어져 있습니다.‘프론트엔드’는 앞쪽에서 유저와 직접 맞닿아 있는 부분을 말합니다. 엘리스와 같은 웹 서비스에서는 웹 브라우저에서 유저들에게 보이는 웹페이지를 HTML/CSS/Javascript를 이용해 만드는 사람들이 프론트엔드 엔지니어라고 할 수 있습니다.‘백엔드’는 유저의 눈에 보이지 않는 뒷부분을 말합니다. 백엔드는 프론트엔드에서 보내는 요청을 처리하고 데이터를 보내주는 역할을 하는데요, 엘리스는 현재 프론트엔드 엔지니어 3명과 백엔드 엔지니어 2명이 서비스 개발을 담당하고 있습니다.한 가지 놀라운 점은, 엘리스의 엔지니어링 팀을 비롯해 디자인 팀, 운영팀 등이 모두 한 곳에 모여있지 않다는 것입니다. 국내에서는 이러한 형태의 원격 근무를 도입한 회사를 찾아보기 어렵지만, 기술의 발전으로 변화한 환경에서 ‘디지털 노마드’를 하나의 생활 양식으로 도입하고자 하는 목소리는 증가하고 있습니다. 디지털 노마드는 쉽게 말하면 어디든 자신이 일하고 싶은 곳에서 원격으로 근무하는 사람을 뜻합니다. 엘리스는 회사 구성원 전체가 원격 근무가 가능한 디지털 노마드 회사를 꿈꾸고 있습니다.엘리스의 모든 개발 과정은 디지털 노마드의 꿈에 걸맞게 원격으로 이루어집니다. 물론 원격으로 함께 일하기 위해서는 효과적인 툴의 도움이 필요할텐데요, 디지털 노마드를 실현하기 위해 엘리스에서는 어떤 도구들을 사용하고 있을까요? 이 글에서는 프론트엔드 팀의 관점에서, 엘리스 웹사이트에 기능이 추가되는 과정과 사용되는 협업툴을 2017년 초에 개발된 ‘헬프센터’를 예로 들어 이야기해보겠습니다.엘리스의 프론트엔드 개발 싸이클엘리스에서 기능이 개발되는 대략적인 흐름은 다음과 같습니다.기획 - 디자인 - 구현 - 테스트 - 배포 & 모니터링여기서 각 단계는 엄밀히 나눠져있거나, 무조건 한 방향으로 흐르지는 않습니다. 구현을 하다가도 기획을 수정해야 하면 다시 처음으로 돌아가기도 합니다. 각 단계를 좀 더 자세히 살펴보도록 하죠.기획 단계어떤 기능이 왜 필요한지, 필요하다면 일의 중요도와 걸리는 시간은 어떤지 등을 엘리스의 연간 로드맵과 비전에 맞춰 논의하고 계획하는 단계입니다. 거의 모든 논의는 Slack이라는 온라인 협업 툴의 화상채팅에서 이루어집니다. 엘리스에는 ‘기획자’라는 역할이 명확하게 주어진 사람은 없습니다. 기본적으로 팀 리더가 의견을 취합하고 방향성을 제시하지만, 엔지니어링팀, 운영팀, 디자인팀 모두가 의견을 자유롭게 제안할 수 있습니다.2017년은 엘리스가 처음으로 대학교, 기업 등 기관 고객이 아닌 일반 사용자에게 수업을 제공하기 시작한 해입니다. 우리는 프로그래밍 학습을 하는 데 있어서 아주 중요한 요소 중 하나가 실습을 빠르게 많이 해보고 막혔을 때는 선생님에게 도움을 받을 수 있게 하는 것이라고 생각했습니다. 특히 프로그래밍을 한 번도 접해보지 않은 분들이 엘리스에서 처음으로 코딩학습을 시작하는 경우가 많았기 때문에, 이러한 사람들에게 효과적으로 도움을 줄 수 있는 기능이 무엇일지에 대한 많은 논의를 나눴습니다. 논의의 결과 개발하기로 결정한 것이 헬프센터입니다.Google Presentation으로 만들어진 초기 헬프센터의 컨셉 디자인 일부거시적 관점에서의 논의가 어느 정도 정리된 후에는 위 그림과 같이 구글 프리젠테이션으로 빠르게 만든 저수준(Low Fidelity) 디자인이 유용하게 쓰입니다. 이러한 저수준 디자인을 통해 개별 페이지의 상세한 디자인에 착수하기 전에 사용자 인터페이스와 경험(UI/UX)을 미리 설계해서 피드백을 주고받을 수 있습니다.기획 단계에서는 기능 요구사항이 현재 서비스 구조와 잘 어울리는지, 무엇이 가능하고 무엇이 하기 어려운지 등을 미리 잘 정해두어야 합니다. 그래야 개발 도중에 뒤엎는 일이 적기 때문입니다. 프론트엔드 엔지니어는 기획 단계의 요구사항을 잘 파악한 뒤에, 새로 기능을 개발하는 데 있어서의 제약사항이나 기존 구조에 대한 변경사항 등의 디테일을 백엔드 엔지니어와 함께 논의하면서 자세하게 정의해 나갑니다. 따라서 다른 팀의 사람들과 소통하는 능력은 프론트엔드 엔지니어에게 특히 중요한 역량이라고 할 수 있습니다.기획 단계에서 주고받은 논의 결과는 엘리스의 위키 페이지에 정리되고, 이슈 관리 도구인 Jira에 등록됩니다. 엘리스의 모든 팀원들은 위키 페이지와 Jira를 통해서 논의된 결과를 확인하고 일의 진행 상황을 파악하게 됩니다.주 사용 도구: Slack, Google Presentation, Confluence Wiki, Jira디자인 단계기능 개발에 필요한 각 페이지의 디자인이 고수준(High Fidelity)으로 만들어지는 단계입니다. 자세한 디자인에 들어가보고 나서야 파악되는 문제도 있기 때문에 디자인 단계에서도 기획에 대한 논의와 수정은 계속됩니다.디자인 단계에서의 논의 역시 Slack 채널에서 이루어집니다. 프론트엔드 팀과 디자인 팀은 온라인에서 디자인 페이지를 함께 보며 디자인에 대한 논의를 진행합니다.엘리스 디자인 팀에서는 주로 Sketch로 페이지 디자인을 합니다. Sketch로 디자인이 되고 나면 페이지 단위로 Invision에 업로드되는데, Invision에서는 다른 페이지로 넘어가는 링크뿐만 아니라 페이지 안에서의 인터랙션(스크롤 내리기, 클릭하기 등.)도 어느 정도 표현할 수 있습니다. 또한 각 요소의 색깔, 크기, 다른 요소와의 간격 등을 개발자가 볼 수 있어서 이를 토대로 페이지를 구현하게 됩니다.Invision에 업로드된 헬프센터 페이지 디자인새로운 페이지를 만들 때 중요한 것 중 하나는 기존 페이지에서 사용자가 경험했던 것을 비슷하게(Consistent) 유지하는 것입니다. 이는 사용자 경험 측면에서도 좋고, 엔지니어 입장에서도 비슷하지만 조금 다른 코드를 자꾸 만들 필요가 없어서 좋습니다. 엘리스 프론트엔드 팀에서는 일관성 있는 디자인을 돕기 위해 비슷한 상황에서 쓰이는 요소들을 모듈화하여 가져다 쓸 수 있는 elice-blocks라는 것을 만들었습니다.elice-blocks의 버튼에 대한 스타일 가이드실제 elice-blocks의 다양한 종류 button들이 구현된 예시요즘은 디자인 팀에서 elice-blocks를 최대한 활용하여 페이지 디자인을 하기 때문에 전보다 코드 품질도 올라가고 개발 속도도 더 빨라졌습니다.새로운 페이지에 대한 디자인이 나오면 프론트엔드 팀과 디자인 팀은 Slack에서 스크린 공유를 통해 Invision 페이지를 함께 보며 elice-blocks가 어떻게 사용되었고 어떻게 업데이트되어야 하는지도 논의합니다.주 사용 도구: Slack, Sketch, Invision구현 단계Jira에 기술된 기능 요구사항과 Invision 페이지를 보며 실제 코딩을 하는 단계입니다. 기획과 디자인 단계에서 충분한 논의가 되었다면 구현 단계에서 걸리는 시간이 많지 않을 수도 있습니다.현재 엘리스 아카데미에서 사용되고 있는 헬프센터의 모습현재 프론트엔드 팀은 3명뿐이라서 보통은 한 사람이 기능 하나씩을 맡아서 개발합니다. 이렇게 할 경우 개발 속도는 좀 빨라질 수 있으나 코드의 품질과 안정성이 떨어질 수 있다는 단점이 있습니다. 이를 보완하기 위해 각자가 할 일을 하면서도 짧은 시간 페어 프로그래밍을 하기도 하고, 완료된 기능에 대해서는 코드 리뷰를 진행합니다.페어 프로그래밍 역시 원격 상황에서 이루어집니다. 하지만 원격으로 안정적인 진행이 쉽지는 않았는데요, 여러 가지를 시도해본 결과 가장 안정적인 것은 Slack으로 화상채팅을 하면서 TeamViwer로 호스트의 컴퓨터를 함께 컨트롤하는 것이었습니다. 3명의 팀원 모두가 함께 진행한 적도 있었는데 무척 재미있더군요.코드 리뷰는 방대한 기능을 개발했을 경우에 팀 차원에서의 리뷰를 위한 화상 회의를 통해 진행됩니다. 또는 해당 기능을 이용하는 개발을 페어로 하기도 합니다. 기본적으로는 엘리스에서 소스코드 관리 도구로 사용하는 Gitlab 안에서 코드 리뷰가 이루어집니다.코드 리뷰 이외에 코드 품질을 높이는 비교적 쉬운 방법 중 하나는 팀의 코딩 스타일 가이드를 잘 정하고 이를 따르는 것입니다. 프론트엔드 팀은 Airbnb의 Javascript 스타일 가이드를 입맛에 맞게 수정해서 사용해왔습니다. 지금은 이를 좀 더 엄밀하게 적용할 필요성을 느껴 Javascript에 대해서는 eslint를, CSS에 대해서는 scss-lint를 이용하여 스타일을 맞추고 있습니다. 이 중 eslint는 후술할 테스트 단계에서도 사용됩니다.참고로 엘리스 프론트엔드는 React 로 구현되어 있는데 페이스북에서 React를 내놓은 아주 초반부터 React를 사용해왔습니다. 그래서 React의 최신 기술이 아닌 오래된 레거시 코드라고 할 만한 부분이 꽤 많습니다. 신규 기능 개발과 더불어 이전 코드를 리팩토링하고 자잘한 버그를 수정하는 것 또한 프론트엔드 엔지니어가 할 일입니다.주 사용 도구: Jira, Invision, Slack, TeamViwer, Gitlab, eslint, scss-lint테스트 단계구현된 기능이 실제로 사용자에게 전달되기 전에 다양한 테스트를 거치는 단계입니다. 가장 기본적인 테스트는 엔지니어가 직접 개발하면서 여러가지 경우의 수에서 의도한 대로 작동하는지 확인하는 것입니다. 여기에 자동화 테스트와 사람이 직접 하는 테스트가 추가됩니다. 엘리스에서 수행하는 자동화 테스트의 종류는 다음과 같습니다.빌드 테스트: 코드가 에러 없이 잘 빌드되는지 확인스타일 테스트: 코드가 엘리스 프론트엔드 팀의 스타일 가이드와 잘 맞는지 확인 (eslint)유닛 테스트: 개별 기능이 잘 동작하는지 확인통합 테스트: 기능의 추가가 전체 시스템에 영향을 미치지는 않았는지 전체 시스템의 동작을 확인자동화 테스트는 Gitlab의 지속적 통합(CI, Continuous Integration) 도구에 연결해두었기 때문에 Gitlab에서 새로운 커밋이 올라오면 자동으로 해당 테스트들이 통과하는지 확인합니다. 즉 코드 리뷰를 시작하기 전에 이미 자동화 테스트는 수행된 것이라고 볼 수 있습니다. 다만 아직까지 엘리스의 코드 규모에 비해 자동화 테스트가 커버하지 못하는 부분이 많기 때문에 이것을 차차 추가해나가고 있습니다.Gitlab의 CI 파이프라인이와 같이 구현과 자동화 테스트는 단계를 나누기 모호할 정도로 긴밀하게 연결되어있지만 굳이 단계를 나눈 이유는 사람이 직접 하는 테스트 때문입니다.자동화 테스트와 리뷰가 끝난 기능은 엘리스의 베타 서버에 올리고, 이를 Slack 채널을 통해 엘리스 팀원들에게 알립니다. 그러면 기획 단계에 참여한 사람들은 베타 서버에서 구현된 기능의 실제 동작을 확인하고 최초의 요구사항을 만족하는지 확인합니다. 확인한 사항에 대한 피드백은 Slack 채널에서 이루어지고 이때 미비한 점이나 버그가 발견되었다고 하면 다시 구현 단계로 돌아가게 됩니다. 요구사항이 잘 만족되었다면 이를 해당 기능에 대한 Jira 이슈에 표시하고 그 기능은 배포가 가능한 상태가 됩니다.주 사용 도구: Slack, Gitlab, Jira배포 및 모니터링 단계구현된 기능이 포함된 버전을 실제 프로덕션 서버에 올리고 확인하지 못한 버그가 발생하지 않는지 모니터링하는 단계입니다. 엘리스는 일주일에 한 번 배포를 기본 원칙으로 하는데, 개발된 것을 목요일까지 베타 서버에 올리고 테스트를 거쳐 목요일 밤이나 금요일에 배포합니다.2017년 11월 3주차의 두 번째 배포. 모든 이슈가 Resolved 상태다.모니터링을 위해 엘리스에서 사용하고 있는 Sentry는 Google Analytics(GA)와 같은 사용자 로그 수집 도구인데, GA와 다른 점은 에러 로그에 특화되어있다는 것입니다. 사용자가 경험한 자바스크립트 에러는 사용자가 어떤 과정을 거쳐 그 에러를 경험하게 되었는지와 함께 기록되고 리포트됩니다. Sentry로 기록되는 에러를 포함하여 다른 모든 종류의 로그는 자체 개발한 elice-logger를 통해 기록되고 있습니다.또한 엘리스에서는 Intercom이라는 사용자 소통 도구를 통해 피드백을 수집합니다. 로그인한 사용자라면 누구든지 ‘문의하기’로 엘리스 운영팀에게 메시지를 보낼 수 있습니다. Intercom에서 들어온 메시지는 Slack을 통해 엘리스 팀 전체에게 공유되고, Sentry에서 들어온 메시지 또한 그렇습니다.Slack으로 사용자 문의가 들어오면 이를 확인한 후에 고쳐야 할 버그라면 수정 작업에 들어갑니다. 버그 수정은 기획-디자인 단계가 문제 제기 단계로 바뀌는 것을 제외하면 기존의 기능 개발 싸이클과 동일합니다.소프트웨어 환경 A에서 권한 B를 가진 계정으로 행동 C를 할 때 원래 예상되는 결과는 D1이지만 현재는 D2가 일어난다라는 포맷으로 문제가 제기되면 이를 개발자가 확인한 후에 문제의 심각성을 파악하여 마찬가지로 구현, 테스트, 배포 및 모니터링을 단계를 진행합니다.주 사용 도구: Jira, Sentry, Intercom, Slack마치며이번 글에서는 디지털 노마드를 꿈꾸는 회사로서 엘리스가 어떤 도구들을 이용하여 기능을 추가하고 버그를 수정하는지를 이야기했습니다. 저는 엘리스가 언젠가 겨울에는 호주에서, 여름에는 캐나다에서 개발할 수 있는 회사가 되기를 소망하고 있습니다. 원격근무가 활성화된 것으로 유명한 회사들이 외국에는 많은데(Gitlab, Basecamp 등) 한국에서는 어떤 회사들이 어떤 도구를 이용하여 디지털 노마드를 실현하고 있는지 궁금하군요.photograph by Marco Verch위와 같은 개발 과정을 잘 해나가기 위해 엘리스의 프론트엔드 엔지니어들에게 필요한 역량은 이런 것들입니다.거시적 관점에서 회사의 비전/로드맵과 현재 하는 일이 잘 맞는지 판단하기기획자 역할을 하는 사람의 의도를 파악하고 이를 토대로 백엔드 엔지니어와 소통하여 개발 스펙 산출하기엘리스 프론트엔드의 스타일 가이드와 React의 좋은 패턴을 이용하여 고품질의 코드로 기능 구현하기각자의 일하는 방식을 존중하고, 함께 하는 세션에 적극적으로 참여하기자신이 구현한 기능을 책임지고 테스트와 유지보수하기여러가지 도구를 익숙하게 사용하며, 새로운 도구를 두려워하지 않고 빠르게 학습하기elice-blocks와 같이 작지만 유용한 내부 프로젝트들을 구현하기사용자의 메시지에 귀를 기울이지만, 그것을 있는 그대로 받아들이기보다 진짜 문제를 찾아서 해결하기물론 현재 저를 포함한 엘리스 팀원들 역시 이 모든 것을 유지하고 더 잘하기 위해 열심히 노력하는 중입니다. 본인에게 이러한 역량이 있거나, 그런 주변 사람을 알거나, 함께 디지털 노마드 회사를 만들고 싶거나, 또는 이 글을 읽고 엘리스의 프론트엔드 팀에 관심이 생기셨다면 주저없이, 연락주시기 바랍니다. 읽어주셔서 감사합니다.#엘리스 #코딩교육 #교육기업 #기업문화 #조직문화 #서비스소개 #채용 #프론트엔드 #개발자 #리모트 #재택근무
조회수 1698

제니퍼에서 새로운 가능성을 실험하라

제니퍼는 기업 내부망에 설치되는 On-Premise 방식의 소프트웨어 제품이다. 12년 넘게 국내 점유율 1위를 지키고 있는 제품이다보니 그만큼 고객의 요구사항도 다양하다. 대부분의 솔루션 회사는 제품 개발 초기에 단일 소스코드를 유지하며 개발하는 것을 추구했을 것이다. 하지만 비즈니스를 하다보면 특정 고객을 위한 기능을 추가할 수 밖에 없는 상황이 오게 된다. 보통 이런 경우에는 숨겨진 기능으로 개발하거나 고객사 별로 소스코드를 다르게 가져가기도 한다.기존의 제니퍼를 사용하는 고객들은 애플리케이션 모니터링만이 아닌 브라우저나 스마트폰 같은 클라이언트 영역과 데이터베이스 관리 시스템까지 연계된 통합 모니터링을 하고자하는 요구사항을 오랫동안 요청했었다. 모니터링 제품 간의 연계를 생각하면 약간 생소하게 생각할 수 있는데, 특정 데이터를 수집하고, 이를 가공하여 사용자에게 보여주는 단순한 매커니즘의 하나라고 생각하면 이해가 쉬울 것 같다.즉, 다른 종류의 데이터를 하나의 화면에서 볼 수 있는 통합 환경을 제공해야 한다. 그래서 최근에는 오픈소스로 배포되고 있는 엘라스틱서치나 상용 제품인 스플렁크 같은 로그분석 솔루션이 주목받고 있다. 하지만 위와 같은 제품들을 사용하여 제니퍼 성능 데이터와 연계하여 통합 환경을 구축한다는 것은 말처럼 간단하지 않다. 제품을 구매하고 학습하는 비용이 생각보다 크고, 통합을 위한 별도의 시스템이 갖춰져야 한다는 것은 고객의 입장에서 큰 부담이 된다. 이러한 부담을 덜어주기 위해서 제니퍼는 실험실이라 불리우는 확장 기능을 제공한다. 실험실은 워드프레스의 플러그인과 비슷한 성격을 가지며 코드 레벨 영역에서 확장될 수 있다. 실험실은 처음부터 다른 모니터링 제품과의 연계를 위해 개발된 것은 아니었다. 기획 초기에는 방대한 제니퍼 데이터를 좀 더 다양한 형태의 화면으로 제공하기 위함이었는데, 아무래도 실험적인 요소가 강하다보니 기존의 대시보드나 분석 같은 범주로 들어가기에는 완성도 측면이나 제니퍼의 방향성에 영향을 미칠 수 있다는 판단에 별도의 범주로 만들게 되었다.  실험실이란 이름은 구글 메일의 실험실에서 따온 것인데, 아직 개발 중인 실험적 기능을 위한 테스트 공간이고, 언제든지 변경 또는 중단되거나 사라질 수 있다. 그리고 모든 실험실 소스코드는 깃허브를 통해 공개하는 것이 기본 정책이다. 제니퍼소프트 깃허브에 가보면 실제로 다수의 실험실 프로젝트가 존재한다는 것을 알 수 있다. 그 중 한가지만 간략하게 소개하자면 사용자 관점의 웹 서비스 모니터링 제품인 아르고스와 연계하여 브라우저나 스마트폰 같은 사용자 관점의 성능 데이터를 제니퍼 트랜잭션 데이터와 연계하여 분석할 수 있는 기능을 제공한다. 실은 그동안 고객들에게 사용자 관점의 성능 모니터링에 대한 요구사항이 많았지만 제니퍼 본연의 영역과 확연하게 다른 측면이 있어서 요구사항을 수용하는데 많은 고민이 필요했다. 그래서 우리는 관련된 솔루션 업체를 찾았고, 상호 간의 비즈니스 협력을 통해 서로의 부족한 부분을 보완하기로 결정했다. 실험실은 제니퍼가 시도하고 있는 새로운 기능을 미리 체험해 볼 수 있을 뿐만이 아니라 오픈소스나 관련된 솔루션과의 연계를 하기 위한 화면을 제공할 수 있다. 뿐만 아니라 코드 레벨 영역에서 확장을 하는 것이다보니 제품의 커스터마이징 범위가 넓어진다. 즉, 화면에 대한 고객의 요구사항이 제니퍼의 방향성과 크게 다르더라도 많은 고민을 하지 않고 충분히 원하는 것을 구현해줄 수 있다. 과거와 달리 동일한 데이터라도 좀 더 시각적인 화면을 요구하는 요즘같은 시기에 실험실은 이러한 시도를 하기에 좋은 방법이 된다.제니퍼는 화면 단위의 확장 기능인 실험실 뿐만이 아니라 트랜잭션 데이터가 수집되는 시점이나 특정 이슈가 발생할 때, 생성되는 이벤트 데이터를 어댑터를 통해 전달받을 수 있다. 어댑터도 실험실과 마찬가지로 코드 레벨 영역에서 확장할 수 있다. 실시간으로 전달받은 트랜잭션 데이터는 별도의 스토리지에 저장하여 목적에 맞게 조회해서 사용할 수 있다. 특히 이벤트 관련 어댑터는 가장 많이 사용되는 제니퍼 확장 기능이며, 고객사의 관제시스템 연동에 주로 사용된다.  실험실은 어댑터와 달리 제니퍼 서버에서 전달받은 데이터를 처리만 하는 단순한 구조가 아니었다. 제니퍼와 독립적인 화면 구성에 필요한 모든 요소들을 갖춰야했기 때문에 고려해야할 것들이 너무 많았다.  그럼에도 불구하고 만들게 된 이유는 단순히 필자의 편리함을 위해서였다. 평소에 데이터 시각화에 관심이 많았기 때문에 이미 존재하는 방대한 제니퍼 데이터를 다양한 방식으로 표현하기 위한 시도를 했었다.하지만 상용 솔루션인 제니퍼에 테스트 코드를 필자 임의로 추가해서 배포하거나 숨긴 기능으로 만들기에는 꽤 부담스러운 일이었다. 그렇다고 별도의 소스코드로 다르게 가지고 가기에는 관리 측면에서 어려움이 있다. 그렇기 때문에 기존의 제니퍼 소스코드를 참조만 하되 서로 독립적으로 개발하는 형태를 생각하게 되었다. 이렇게 필자의 편리함을 위해 시작한 실험실이지만 오픈소스나 다른 솔루션과의 연동을 위한 화면을 제공하고, 새로운 제니퍼 기능에 대한 비전을 시사하거나 고객의 피드백을 수용하는 용도로 확장되었다.소프트웨어 개발을 하다보면 제품이 추구하는 방향과 달라서, 또는 구현은 가능하지만 소모되는 리소스 비용이 부담이 될 경우, 그리고 특정 사용자를 위한 특화된 기능을 구현할 때, 모두가 만족할만한 기능이라는 확신이 없다면 제대로 진행하기가 어려운게 현실이다. 사실 새로 시도하는 기능은 시기와 때에 따라 앞에서 고려했던 것들과 다르게 평가되는 경우도 있다.그래서 아무리 작은 아이디어라도 시도를 해보는 것 자체만으로도 큰 의미가 있으며, 새로운 가능성을 발견하는 계기가 될 수 있다. 다만 현재는 제니퍼 기능 확장에 대한 기반 정도만 갖춰진 시작 단계라서 관련된 API 문서나 개발 도구에 대한 지원이 미흡한 것이 아쉬움으로 남는다. 다음 편에서는 자바 개발자 대상으로 실험실을 직접 구현하는 방법에 대해 알아볼 것이다.
조회수 1498

PyCon2017 첫번째날 후기

아침에 느지막이 일어났다. 어제 회사일로 피곤하기도 했지만 왠지 컨디션이 좋은 상태로 발표를 하러 가야지!라는 생각 때문에 깼던 잠을 다시 청했던것 같다. 일어나 아침식사를 하고 아이 둘과 와이프를 두고 집을 나섰다. 작년 파이콘에는 참가해서 티셔츠만 받고 아이들과 함께 그 옆에 있는 유아교육전을 갔었기에 이번에는 한참 전부터 와이프에게 양해를 구해둔 터였다.코엑스에 도착해서 파이콘 행사장으로 가까이 가면 갈수록 백팩을 메고, 면바지를 입고, 영어 글자가 쓰인 티셔츠를 입은 사람의 비율이 높아지는 것으로 보아 내가 제대로 찾아가고 있구나 라는 생각이 들었다.                                               늦게 왔더니 한산하다.지난번에는 입구에서 에코백과 가방을 나눠줬던 것 같은데 이번에는 2층에서 나눠준다고 한다. 1층이 아무래도 복잡해지니 그런 것 같기도 하고, 2층에서 열리는 이벤트들에도 좀 더 관심을 가져줬으면 하는 것 같기도 하다. 우선 스피커 옷을 받고 싶어서 (솔직히 입고 다니고 싶어서) 2층에 있는 스피커방에 들어갔다.                         허락 받지 않고 사진찍기가 좀 그래서 옆방을 찍었다.첫 번째 키노트는 놓쳤지만 두 번째 키노트는 꼭 듣고 싶었기에 간단히 인사만 하고 티셔츠를 들고 나왔다. (외국에서 오신 연사분과 영어로 대화를 나누고 있어서 자리를 피한것은 아니다.) 나가는 길에 보니 영코더(초등학교 5학년 부터 고등학생 까지 파이썬 교육을 하는 프로그램)을 진행하고 있었다. 의미있는 시도를 하고 있다는 생각이 들었다.                          이 친구들 2년 뒤에 나보다 잘할지도 모른다.키노트 발표장에 갔더니 아웃사이더님이 뒤에 서 게셨다. 지난 파이콘 때 뵙고 이번에 다시 뵈었으니 파이콘이 사람들을 이어주는 역할을 하는구나 싶었다.키노트에서는 현우 님의 노잼, 빅잼 발표 분석 이야기를 들을 수 있었다. 그리고 발표를 통해 괜히 이것저것 알려줘야만 할 것 같아 발표가 부담스러워지는 것 같다는 이야기를 들었다. 나 또한 뭔가 하나라도 지식을 전달해야 한다는 압박감을 느끼고 있었던 터라 현우 님의 키노트 발표를 듣고 나니 좀 더 오늘을 즐겨야겠다는 생각이 들었다.                                              오늘은 재미있었습니다!현우님 키노트를 듣고 같은 시간(1시)에 발표를 하시는 경업님과 이한님 그리고 내일 발표이신 대명님, 파이콘 준비위원회를 하고 계신 연태님과 함께 식사를 하러 갔다. 가는 길에 두숟갈 스터디를 함께 하고 계신 현주님과 희진 님도 함께했다. 사실 이번에는 발표자도 티켓을 사야 한다고 해서 조금 삐져 있었는데 양일 점심 쿠폰을 주신다고 해서 삐진 마음이 눈 녹듯이 사라졌다.                                                  부담 부담식사를 하고 발표를 할 101방으로 들어가 봤다. 아직 아무도 없는 방이라 그런지 괜히 긴장감이 더 생기는 느낌이다. 발표 자료를 열어 처음부터 끝까지를 한번 넘겨 보고 다시 닫았다. 처음에는 가장 첫 발표라 불만이었는데 생각해보니 발표를 빨리 마치고 즐기는 게 훨씬 좋겠다는 생각이 들었다. 발표 자료를 다듬을까 하다가 집중이 되지 않아 밖으로 나갔다. “열린 공간” 현황판에 충동적으로 포스트잇을 하나 붙이고 왔다. 어차피 발표는 나중에 온라인으로도 볼 수 있으니까 사람들과 이야기를 나눠 봐야 겠다 싶었다. (내 발표에는 사람이 많이 왔으면 하면서도, 다른 사람의 발표는 온라인으로 보겠다는 이기적인 생각이라니..)                                            진짜 궁금하긴 합니다다시 발표장으로 돌아왔다. 왠지 모르는 분들은 괜찮은데 아는 분들이 발표장에 와 계시니 괜히 더 불안하다. 다른 분들은 발표자료에 짤방도 많이 넣으셨던데.. 나는 짤방도 없는 노잼 발표인데.. 어찌해야 하나. 하지만 시간은 다가오고 발표를 시작했다.                                            얼굴이 반짝 반짝리허설을 할 때 22분 정도 시간이 걸렸던 터라 조금 당겨서 진행을 했더니 발표를 거의 20분에 맞춰서 끝냈다. 그 뒤에 몇몇 분이 오셔서 질문을 해주셨다. 어리버리 대답을 한 것 같다. 여하튼 내 발표를 찾아오신 분들께 도움이 되었기를. 그리고 앞으로 좀 더 정확한 계산을 하시기를.대단히 발표 준비를 많이 하지도 못하면서 마음에 부담만 쌓아두고 있는 상황이었는데, 발표가 끝나니 아주 홀가분한 마음이 되었다. 발표장을 나가서 이제 부스를 돌아보기 시작했다. 매해 참여해 주고 계신 스마트스터디도 보이고 (정말 안 받고 싶은 ‘기술부채’도 받고 말았다.) 쿠팡, 레진 등 친숙한 회사들이 많이 보였다. 내년에는 우리 회사도 돈을 많이 벌어 여기에 부스를 내고 재미있는 이벤트를 하면 좋겠다는 생각이 들었다.부스를 돌아다니다가 이제 파이콘의 명물이 된 내 이름 찾기를 시작했다. 이름을 찾기가 쉽지가 않다. 매년 참여자가 늘어나서 올해는 거의 2000명에 다다른다고 하니 파이썬 커뮤니티의 성장이 놀랍다. 10년 전에 파이썬을 쓸 때에는 그리고 첫 번째 한국 파이콘이 열릴 때만 해도 꽤 마이너 한 느낌이었는데, 이제 주류가 된 것 같아 내 마음이 다 뿌듯하다. (그리고 내 밥줄이 이어질 수 있는 것 같아 역시 기쁘다)                                          어디 한 번 찾아보시라다음으로는 박영우님의 "Django admin site를 커스텀하여 적극적으로 활용하기” 발표를 들으러 갔다. (짧은 발표를 좋아한다.) 알고 있었던 것도 있었지만 커스텀이 가능한지 몰랐던 것들도 있어서 몇 개의 기능들을 킵해 두었다. 역시 컨퍼런스에 오면 내게 필요한 ‘새로운 것’에 대한 실마리를 주워가는 재미가 있다.                                     익숙하다고 생각했지만 모르는 것이 많다4시가 되어 OST(Open Space Talk)를 하기로 한 208B 방으로 조금 일찍 갔다. 주제가 뭐였는지는 잘 모르겠는데 주식 투자, Tensor Flow, 비트코인, 머신러닝 등등의 이야기들이 오가고 있었다. 4시가 되어 내가 정한 주제에 대해 관심 있는 사람들이 모였다. 괜히 모일 사람도 없는데 큰방을 잡은 것이 아닐까 하고 생각하고 있었는데, 생각보다 많은 분들이 오셨다.각 회사들이 어떤 도구를 사용하는지 설문조사도 해보고, 또 어떤 개발 방법론을 사용하는지, 코드 리뷰, QA는 어떻게 하고 있는지에 대한 이야기를 나눴다. 다양한 회사에서 다양한 일을 하는 사람들이 모여 있다 보니 생각보다 꽤 재미있게 논의가 진행되었다. 사실 내가 뭔가 말을 많이 해야 할 줄 알았는데, 이야기하고 싶은 분들이 많이 있어서 진행을 하는 역할만 하면 되었다. 마지막으로는 “우리 회사에서 잘 사용하고 있어서 다른 회사에도 추천해 주고 싶은 것”을 주제로 몇 가지 추천을 받은 것도 재미가 있었다.                                  열심히 오간 대화를 적어두긴 했다5시에 OST를 마치고는 바로 집으로 돌아왔다. 오늘 저녁에 아이들을 잘 돌보고 집 청소도 열심히 해두어야 내일 파이콘에 참여할 수 있기 때문이다. 기대된다. 내일의 파이콘도.그리고 정말 감사드린다. 파이콘을 준비해주시고 운영해주고 계신 많은 분들께.                                                   #8퍼센트 #에잇퍼센트 #이벤트 #참가후기 #파이콘 #개발자 #개발 #파이썬 #Python #Pycon
조회수 2317

Tabnabbing 피싱 공격의 동작 원리와 대응책

브라우저에서 사용자의 개인 정보를 가로채는 여러가지 피싱 공격 기법이 있습니다. 이 글에서는 그 중에서도 상대적으로 단순해서 과소평가된 Tabnabbing 공격의 동작 원리와 대응책을 함께 알아보겠습니다.Tabnabbing 의 동작 원리Tabnabbing은 HTML 문서 내에서 링크(target이 _blank인 Anchor 태그)를 클릭 했을 때, 새롭게 열린 탭(또는 페이지)에서 기존의 문서의 location을 피싱 사이트로 변경해 정보를 탈취하는 공격 기술을 뜻한다. 이 공격은 메일이나 오픈 커뮤니티에서 쉽게 사용될 수 있습니다.(출처: blog.jxck.io 영어 스펠링이 이상해 보이는 것은 기분 탓입니다)공격 절차는 다음과 같습니다:사용자가 cg**m**.example.com에 접속합니다.해당 사이트에서 happy.example.com으로 갈 수 있는 외부 링크를 클릭합니다.새 탭에 happy.example.com가 열립니다.happy.example.com에는 window.opener 속성이 존재합니다.자바스크립트를 사용해 opener의 location을 피싱 목적의 cg**n**.example.com/login 으로 변경합니다.사용자는 다시 본래의 탭으로 돌아옵니다.로그인이 풀렸다고 착각하고 아이디와 비밀번호를 입력한다.cg**n**.example.com은 사용자가 입력한 계정 정보를 탈취한 후 다시 본래의 사이트로 리다이렉트합니다.예제: 네이버 메일 vs. Gmail시나리오를 하나 그려볼까요?공격자가 네이버 계정을 탈취할 목적으로 여러분에게 세일 정보를 담은 메일을 보냅니다. 그 메일에는 [자세히 보기]라는 외부 링크가 포함되어 있습니다. 물론 이 세일 정보는 가짜지만 공격자에겐 중요하지 않습니다. 메일을 읽는 사람이 유혹에 빠져 링크를 클릭하면 그만이죠.(상단의 주소를 주목하세요)하지만 Gmail은 이 공격이 통하지 않습니다. Gmail은 이러한 공격을 막기 위해 Anchor 태그에 data-saferedirecturl 속성을 부여해 안전하게 리다이렉트 합니다.rel=noopener 속성이러한 공격의 취약점을 극복하고자 noopener 속성이 추가됐습니다. rel=noopener 속성이 부여된 링크를 통해 열린 페이지는 opener의 location변경과 같은 자바스크립트 요청을 거부합니다. 정확히 말해서 Uncaught TypeError 에러를 발생시킵니다(크롬 기준).이 속성은 Window Opener Demo 페이지를 통해 테스트해볼 수 있습니다. 크롬은 버전 49, 파이어폭스 52부터 지원합니다. 파이어폭스 52가 2017년 3월에 릴리즈 된 것을 감안하면 이 속성 만으로 안심하긴 힘들겠네요. 자세한 지원 여부는 Link types를 참고하세요.따라서, 이러한 공격이 우려스러운 서비스라면 blankshield 등의 라이브러리를 사용해야 합니다:blankshield(document.querySelectorAll('a[target=_blank]')); 참고로, noopener 속성은 이 외에도 성능 상의 이점도 있습니다. _blank 속성으로 열린 탭(페이지)는 언제든지 opener를 참조할 수 있습니다. 그래서 부모 탭과 같은 스레드에서 페이지가 동작합니다. 이때 새 탭의 페이지가 리소스를 많이 사용한다면 덩달아 부모 탭도 함께 느려집니다. noopener 속성을 사용해 열린 탭은 부모를 호출할 일이 없죠. 따라서 같은 스레드일 필요가 없으며 새로운 페이지가 느리다고 부모 탭까지 느려질 일도 없습니다.성능 상의 이점에 대한 자세한 내용은 The performance benefits of rel=noopener을 참고하세요.참고자료Tabnabbing: A New Type of Phishing AttackTarget=”_blank” - the most underestimated vulnerability ever링크에 rel=noopener를 부여해 Tabnabbing을 대비(일어)The performance benefits of rel=noopener
조회수 3743

iOS에서 간결한 API 클라이언트 구현하기 (like Retrofit+GSON)

이 글은 안드로이드 개발에서 웹 서버 API 클라이언트를 간결하게 구현할 수 있도록 도와주는 강력한 오픈소스 라이브러리인 Retrofit과 GSON의 조합을 iOS 개발에서도 따라해보고 싶은 분들을 위해 작성되었습니다. Retrofit+GSON를 실제로 사용하는 좋은 예제는 다른 블로그 글에서도 찾아볼 수 있습니다.배경리디북스 서비스가 발전하면서 점점 복잡해지고, 자연히 앱의 기능도 다양해지기 시작했습니다. 기능이 다양해지면서 웹 서버와의 연동을 위한 API 종류도 늘어났고 앱 내에서 API 호출이 필요한 부분도 다양해지면서 관련된 중복 코드가 이곳 저곳에 산재하게 되었고 전체적인 코드 퀄리티 향상을 위해 이를 최소화하고 모듈화 할 필요성이 생겼습니다.안드로이드에서는 Pure Java로 작성되어 어노테이션을 통한 간결한 코드를 사용할 수 있게 해주는 Retrofit을 GSON과 연동하여 JSON 응답을 손쉽게 객체에 맵핑 하여 사용함으로써 이러한 문제를 성공적으로 해결할 수 있었습니다. 이후 iOS 개발을 진행하면서 비슷한 역할을 할 수 있는 도구가 있을까 찾아봤지만 마땅하지 않아 결국 사용 가능한 도구들을 이용해 비슷하게 따라해보기로 했습니다.목표Retrofit+GSON 조합을 최대한 따라해서 iOS 앱의 코드 퀄리티를 높이기 위한 작업을 진행하기는 하지만 모방하는 것 자체가 목적이 될 수는 없으므로, 구체적인 목적은 다음과 같은 것들로 상정해보았습니다.API 통신 부분을 모듈화하여 관련 중복 코드를 최소화하기NSArray, NSDictionary를 직접 사용하여 제어 했던 JSON 처리 부분을 추상화하여 모델 클래스를 정의, JSON 응답을 자동으로 객체에 맵핑 해서 사용할 수 있도록 하기필요한 것Retrofit과 GSON의 동작에 대한 이해AFNetworking비동기 HTTP 요청 처리에 용이하므로 기존에도 이미 API 호출을 위해서도 사용하고 있었습니다.이 글의 내용은 버전 2.6.3 기준입니다.Swift 언어와 그에 대한 이해사실 Objective-C를 사용해도 무방하지만, 작업 당시 Swift가 발표된 지 얼마 되지 않은 시점 이었기 때문에 시험 삼아 선택 되었으며 실제로 Swift가 Objective-C 대비 가진 장점들이 적지 않게 활용되었습니다.이 글의 내용은 버전 2.0 기준입니다.구조와 동작클래스 이름 앞에 붙어 있는 RB는 리디북스에서 사용하는 클래스 접두어 입니다.RBApiServiceAPI 통신을 담당하는 부분의 핵심은 중앙의 RBApiService 클래스를 포함한 상속 구조라고 할 수 있으며 상술하면 다음과 같습니다.AFNetworking에서, HTTP 요청 작업의 큐잉부터 시작과 종료까지 라이프 사이클 전반을 관리하는 역할을 하는 AFHTTPRequestOperationManager를 상속받는 RBApiService 클래스를 정의각 API들은 역할군에 따라 RBBookService(책 정보 관련 API), RBAccountService(사용자 계정/인증 관련 API) 등과 같은 RBApiService의 하위 클래스들의 메소드로 정의됨이 하위 클래스들이 AFHTTPRequestOperationManager의 역할을 그대로 이어받아 자신을 통해 이루어지는 API HTTP 요청 작업들을 관리이 설명에 따르면 웹 서버의 /api/foo/bar API를 요청하는 메소드는 RBFooService 클래스에 다음과 같이 정의될 것입니다.func bar(param1: String, param2: String, success: RBApiSuccessCallback, failure: RBApiFailureCallback) -> AFHTTPRequestOperation! { let paramters = ["param1": param1, "param2": param2] responseSerializer = RBJSONResponseSerializer(responseClass: RBFooBarResponse.class) return GET("/api/foo/bar", parameters: parameters, success: success, failure: failure) }RBApiSuccessCallback과 RBApiFailureCallback은 요청과 응답이 완료되고 각각 성공, 실패일 때 호출되는 람다 함수(Objective-C의 block에 대응되는 개념) 타입으로 다음과 같이 typealias를 통해 선언되어 있습니다. typealias RBApiSuccessCallback = ((operation: AFHTTPRequestOperation, responseObject: AnyObject) -> Void)? typealias RBApiFailureCallback = ((operation: AFHTTPRequestOperation?, error: NSError) -> Void)?GET 메소드는 AFHTTPRequestOperationManager의 메소드로 새로운 HTTP GET 요청 작업을 생성하고 큐에 넣은 뒤 그 인스턴스를 반환합니다. bar 메소드는 이렇게 반환된 인스턴스를 다시 그대로 반환하는데 API 호출을 의도한 측에서는 이 인스턴스를 통해 필요한 경우 요청 처리를 취소할 수 있습니다. API에 따라 GET 이외의 다른 방식의 요청이 필요하다면 POST, PUT, DELETE등의 메소드들 또한 사용할 수 있습니다.RBFooBarResponse 클래스는 이 API 호출의 JSON 응답을 맵핑하기 위한 모델 클래스입니다. 이 API 요청의 응답은 RBJSONResponseSerializer 클래스를 통해 사전에 정의된 규칙에 따라 적절히 RBFooBarResponse 인스턴스로 변환되고 이 모든 과정이 성공적으로 진행되면 RBApiSuccessCallback의 responseObject 인자로 전달됩니다.모델 클래스와 RBJSONResponseSerializer앞서 이야기했듯이 RBJSONResponseSerializer는 JSON 형태로 온 응답을 특정 모델 클래스의 인스턴스로 맵핑시키는 작업을 수행합니다(Retrofit+GSON 조합에서 GsonConverter의 역할에 대응한다고 볼 수 있습니다).iOS 개발에서 전통적으로 JSON을 다루는 방식은 Cocoa 프레임워크에서 기본적으로 제공하는 NSJSONSerialization 클래스를 이용하여 JSON Array->NSArray로, 그 외의 JSON Object는 NSDictionary로 변환하여 사용하는 방식입니다. 이러한 방식을 사용할 경우 별다른 가공이 필요 없다는 장점이 있는 대신 다음과 같은 문제들에 직면할 수 있습니다.데이터가 명시적으로 정의된 프로퍼티로 접근되지 않고 문자열 키 기반의 키-밸류 형태로만 접근되므로 데이터의 타입이 명시적이지 않아 타입 검사와 캐스팅이 난무하게 되어 가독성을 해침오타와 같은 개발자의 단순 실수로 인한 버그를 유발할 가능성도 커짐특히 오타로 인한 버그의 경우 명시적인 모델 클래스의 프로퍼티로 맵핑 해서 사용한다면 IDE가 에러를 검출해주거나 최소한 빌드 타임 에러가 발생할테니 미연에 방지할 수 있습니다. 이러한 문제는 사소한 실수로 인해 찾기 힘든 버그가 발생한다는 점과 코드 리뷰를 통해서도 발견하기가 힘들다는 점에서 지속적으로 개발자를 괴롭힐 수 있습니다.RBJSONResponseSerializer를 통한 인스턴스로의 변환은 이런 문제 의식에서 출발했고 Retrofit에 GSON을 연계하여 사용하기 위한 GsonConverter가 해결을 위한 힌트를 제공한 셈입니다.// AFJsonResponseSerializer는 NSJSONSerializer를 이용해 NSArray/NSDictionary로 변환하는 기본적인 작업을 해줌 class RBJSONResponseSerializer: AFJSONResponseSerializer { var responseClass: NSObject.Type! override init() { super.init() } required init(responseClass: NSObject.Type!) { self.responseClass = responseClass super.init() } required init(coder aDecoder: NSCoder) { fatalError("init(coder:) has not been implemented") } override func responseObjectForResponse(response: NSURLResponse?, data: NSData?, error: NSErrorPointer) -> AnyObject? { // 파서를 직접 구현하는 건 노력이 많이 필요하므로 우선 AFJSONResponseSerializer를 이용해 NSArray/NSDictionary로 변환 let responseObject: AnyObject! = super.responseObjectForResponse(response, data: data, error: error) if let dictionary = responseObject as? NSDictionary where responseClass != nil { // 변환 결과가 NSDictionary이면서 responseClass가 정의되어 있다면 변환 작업 시작 return responseClass.fromDictionary(dictionary, keyTranslator: PropertyKeyTranslator) } // NSArray라면 JSON이 top level array로 이루어졌다는 뜻이므로 변환 불가로 보고 그대로 반환 // 혹은 responseClass가 정의되어 있지 않아도 그대로 반환 return responseObject } }Key translatorfromDictionary 메소드 호출 시 함께 인자로 전달되는 keyTraslator는 JSON에서 사용되는 키로부터 모델 클래스의 프로퍼티 이름으로의 변환을 나타내는 람다 함수로 개발자가 원하는 규칙에 따라 정의하면 됩니다. 위의 코드에서 사용 중인 PropertyKeyTranslator는 리디북스 API에서 사용 중인 규칙 및 Swift의 네이밍 컨벤션에 따라 다음과 같이 언더스코어(_) 케이스로 된 이름을 카멜 케이스로 바꾸는 형태로 정의되었으며 이는 GSON의 FieldNamingPolicy 중 LOWERCASE_WITH_UNDERSCORES와 유사합니다.let PropertyKeyTranslator = { (keyName: String) -> String in let words = keyName.characters.split { $0 == "_" }.map { String($0) } var translation: String = words[0] for i in 1..NSObject.fromDictionary 메소드fromDictionary 메소드는 NSDictionary로 표현된 데이터를 실제 모델 클래스의 인스턴스로 변환하는 작업을 수행하며 NSObject의 extension(Objective-C의 category 개념과 유사합니다)으로 정의하여 원하는 모델 클래스가 어떤 것이든지 간에 공통적인 방법을 사용할 수 있게끔 했습니다.extension NSObject { class func fromDictionary(dictionary: NSDictionary) -> Self { // keyTranslator가 주어지지 않으면 디폴트 translator 사용 return fromDictionary(dictionary, keyTranslator: { $0 }) } class func fromDictionary(dictionary: NSDictionary, keyTranslator: (String) -> String) -> Self { let object = self.init() (object as NSObject).loadDictionary(dictionary, keyTranslator: keyTranslator) return object } func loadDictionary(dictionary: NSDictionary, keyTranslator: (String) -> String) { // 주어진 dictionary에 포함된 모든 키-밸류 쌍에 대해 작업 수행 for (key, value) in (dictionary as? [String: AnyObject]) ?? [:] { // keyTranslator를 이용해 키를 프로퍼티 이름으로 변환 let keyName = keyTranslator(key) // 프로퍼티 이름을 사용할 수 있는지 검사 if respondsToSelector(NSSelectorFromString(keyName)) { if let dictionary = value as? NSDictionary { // 밸류가 NSDictionary면 해당 프로퍼티의 타입에 대해 fromDictionary 메소드 호출 if let ecls = object_getElementTypeOfProperty(self, propertyName: keyName) as? NSObject.Type { setValue(ecls.fromDictionary(dictionary, keyTranslator: keyTranslator), forKey: keyName) } else { NSLog("NSObject.loadDictionary error: not found element type of property. (key: \(keyName), value: \(dictionary))") } continue } else if let array = value as? NSArray { var newArray = [NSObject]() // 밸류가 배열이면 각 요소별로 작업 수행 for object in array { if let dictionary = object as? NSDictionary { // 배열 요소가 NSDictionary면 프로퍼티의 배열 요소 타입에 대해 fromDictionary 메소드 호출한 뒤 배열에 추가 if let ecls = object_getElementTypeOfProperty(self, propertyName: keyName) as? NSObject.Type { newArray.append(ecls.fromDictionary(dictionary, keyTranslator: keyTranslator)) } else { NSLog("NSObject.loadDictionary error: not found element type of property. (key: \(keyName), value: \(dictionary))") } } else if let object = object as? NSObject { // NSDictionary가 아니면 그대로 배열에 추가 newArray.append(object) } else { NSLog("NSObject.loadDictionary error: can't cast element. (key: \(keyName), value: \(object))") } } setValue(newArray, forKey: keyName) continue } else if value is NSNull { continue } // NSDictionary, NSArray가 아니면서 null도 아니면 그대로 사용 setValue(value, forKey: keyName) } } } }주어진 dictionary에 존재하는 모든 키-밸류 쌍에 대해 밸류가 가진 타입과 이에 대응하는 프로퍼티의 타입에 따라 적절히 프로퍼티에 대응될 객체를 구한 다음 Cocoa 프레임워크에서 제공하는 KVC를 이용해 채워넣습니다.프로퍼티 타입 정보 가져오기모델 클래스가 반드시 Int, String, Float과 같은 기본적인 타입들로만 이루어져 있을 필요는 없고 다른 모델 클래스의 인스턴스나 배열을 포함하고 있어도 타입 정보를 런타임에 가져와 재귀적으로 데이터를 채워나가는 것이 가능합니다. 프로퍼티의 타입을 알아내는 과정은 다음과 같이 Swift에서 제공하는 Mirror 구조체를 통해 이루어지는데 이는 마치 (이름에서도 느낄 수 있듯이) Java의 리플렉션을 떠올리게 합니다.// 타입 이름에서 특정 접두어("Optional", "Array", "Dictionary" 등)를 찾아 제거 func encodeType_getUnwrappingType(encodeType: String, keyword: String) -> String { if encodeType.hasPrefix(keyword) { let removeRange = Range(start: encodeType.startIndex.advancedBy(keyword.length + 1), end: encodeType.endIndex.advancedBy(-1)) return encodeType.substringWithRange(removeRange) } else { return encodeType } } // object의 타입에서 propertyName의 이름을 갖는 프로퍼티의 타입 이름을 반환 func object_getEncodeType(object: AnyObject, propertyName name: String) -> String? { let mirror = Mirror(reflecting: object) let mirrorChildrenCollection = AnyRandomAccessCollection(mirror.children)! // object의 타입 구조 children 중에서 propertyName을 찾음 for (label, value) in mirrorChildrenCollection { if label == name { // Optional 타입인 경우 "Optional" 접두어를 제외 return encodeType_getUnwrappingType("\(value.dynamicType)", keyword: "Optional") } } return nil } // object의 타입에서 propertyName의 이름을 갖는 프로퍼티의 타입 인스턴스를 반환 func object_getElementTypeOfProperty(object: AnyObject, propertyName name: String) -> AnyClass? { // 타입의 이름을 가져옴 if var encodeType = object_getEncodeType(object, propertyName: name) { let array = "Array" // "Array" 접두어로 시작할 경우 (배열인 경우) if encodeType.hasPrefix(array) { // "Array" 에서 "Array" 제외하고 T를 반환 return NSClassFromString(encodeType_getUnwrappingType(encodeType, keyword: array)) } let dictionary = "Dictionary" if encodeType.hasPrefix(dictionary) { // "Dictionary" 에서 "Dictionary", "K"를 제외하고 V를 반환 encodeType = encodeType_getUnwrappingType(encodeType, keyword: dictionary) encodeType = encodeType.substringWithRange(Range(start: encodeType.rangeOfString(", ")!.endIndex.advancedBy(1), end: encodeType.endIndex)) return NSClassFromString(encodeType) } // 커스텀 클래스 접두어를 가지고 있다면 그 타입 그대로 반환 if encodeType.hasPrefix(RidibooksClassPrefix) { return NSClassFromString(encodeType) } } return nil }RidibooksClassPrefix는 커스텀 클래스들의 접두어를 나타내는 상수이며(리디북스의 경우 앞서 이야기했듯 “RB”), 이 접두어가 붙어있는 경우에만 모델 클래스로 간주해 해당 타입 인스턴스가 반환됩니다.예시앞서 정의한 PropertyKeyTranslator를 사용했을 때, 위에 예시로 사용했던 /foo/bar API 요청의 JSON 응답과 모델 클래스 및 생성되는 인스턴스 형태의 예를 들면 다음과 같을 것입니다.(Int, Bool, Float과 같은 기존 NSNumber 기반의 타입을 가지는 프로퍼티들은 아직 정확한 원인은 알 수 없으나 nil 이외의 값으로 초기화 해주지 않으면 프로퍼티가 존재하는지 확인하기 위해 사용하는 respondsToSelector 메소드가 false를 뱉게 되어 사용할 수 없으므로 클래스 선언시 적절한 초기값을 주어야 합니다.{ "success": true, "int_value": 1, "string_value": "Hello!", "float_value": null, "baz_qux": { "array_value": [1, 2, 3] } }class RBFooBarResponse : NSObject { var success = false // true var intValue = 0 // 1 var stringValue: String! // "Hello!" var floatValue: Float! = 0.0 // nil var bazQux: RBBazQux! } class RBBazQux : NSObject { var arrayValue: [Int]! // [1, 2, 3] }맺음말이런 작업들을 통해 당초 목표했던 두 가지, API 통신 관련 중복 코드를 최소화 하면서 JSON 응답을 가독성이 더 좋고 실수할 확률이 적은 모델 클래스의 인스턴스로 자동 변환 하도록 하는 것 모두 달성하는 데에 성공했습니다.다만 모든 것이 뜻대로 될 수는 없었는데 Retrofit+GSON과 비교했을 때 플랫폼 혹은 언어의 특성에 기인하는 다음과 같은 한계들 또한 존재했습니다.Retrofit에서는 Java 어노테이션을 이용해 API 메소드의 인터페이스만 정의하면 됐지만 iOS 구현에서는 GET, POST 등의 실제 요청 생성 메소드를 호출 하는 것 까지는 직접 구현해줘야 함키->프로퍼티 이름 변환 규칙에 예외 사항이 필요할 때 GSON에서는 @SerializedName 어노테이션을 통해 손쉽게 지정할 수 있지만 iOS 구현에서는 예외 허용을 위한 깔끔한 방법을 찾기가 힘듬 (다만, 예외가 필요한 경우가 특별히 많지는 않기 때문에 큰 문제는 되지 않음)향후에는 HTTP 통신을 위해 사용 중인 AFNetworking(Objective-C로 작성됨)을 온전히 Swift로만 작성된 Alamofire로 교체하는 것을 검토 중이며 기존에 비해 좀 더 간결한 코드를 사용할 수 있을 것으로 기대하고 있습니다. 다만 Alamofire의 최신 버전이 iOS 8 이상을 지원하고 있어 iOS 7을 아직 지원 중인 리디북스인 관계로 언제 적용할 수 있을지는 아직 미지수입니다.#리디북스 #개발 #개발자 #iOS #iOS개발 #API #API클라이언트 #GSON #Retrofit #중복코드 #최소화 #API통신 #웹서버 
조회수 1759

[Buzzvil Career] 좋은 데이터 애널리스트는 어떤 사람일까?

모바일 잠금화면 미디어 플랫폼 사업자 버즈빌은 어떠한 인재를 찾는지 지원자에게 잘 알리려고 노력합니다. 그럼 지원자도 버즈빌이 자신에게 맞는 기업인지 알 수 있을 테니까요. Buzzvil Career에서는 각 직무에 대해 더욱 심도 있는 정보를 제공합니다. 현재 채용에 관련한 자세한 내용은 여기에서도 확인 가능합니다. 이 게시물은 데이터 애널리스트 Elia와의 인터뷰를 담고 있습니다. 그는 좋은 데이터 애널리스트는 어떤 사람인지에 대해 이야기합니다. 데이터를 좋아하고 데이터에 기반한 기업 성장에 기여하고 싶다면 이 글에 주목해주세요.업무에 대해 설명해주세요.안녕하세요. 버즈빌의 데이터 애널리스트 Elia입니다. 팀에서 일한 지 어느덧 4년이라는 세월이 흘렀네요. 데이터 분석을 위한 툴을 세팅하고 많은 양의 가공된 데이터를 공유하고 있습니다. 데이터로 무엇을 하고 어떻게 활용할지 고민하는 것이 제 일입니다. 또 저는 올바른 결정을 내리고 효율적으로 업무를 수행할 수 있도록 A/B 테스팅과 다양한 연구를 수행하고 있습니다. 마지막으로 SQL 세션을 열어서 사람들이 데이터에 유연하게 접근하고 잘 사용할 수 있도록 합니다.왜 버즈빌을 선택 했나요?가까운 지인이 이 회사를 추천해줬습니다. 분위기가 친근했고 한국에도 이런 곳이 있다는 게 놀라웠습니다. 그리고 버즈빌은 석촌 호수 바로 앞에 있어서 전망이 훌륭한데 특히 봄이 되면 벚꽃을 볼 수 있습니다. 그리고 무엇보다 사무실은 저희 집과 가깝습니다. 그러니 제가 거절할 이유가 없었죠.버즈빌은 어떤 곳인가요?버즈빌은 데이터 애널리스트로서 성장할 수 있는 곳입니다. 팀 규모가 그렇게 크지 않아서 유연합니다. 많은 사람과 이야기를 할 수 있고 사람들을 어떻게 도울 수 있을지, 어떤 일을 이루어야 하는지 스스로 고민할 수 있기 때문에 컨설턴트 같은 존재입니다. 그만큼 특정 역할에 고정되지 않습니다. 데이터 분석은 새로운 분야입니다. 그래서 회사가 그것을 어떻게 생각하는지에 따라 담당자가 할 수 있는 일이 달라집니다. 다행히 버즈빌리언은 새로운 아이디어와 제안에 개방적인 태도를 보입니다. 버즈빌처럼 새로운 분야를 배우는 걸 좋아하는 집단도 없을 겁니다. 그래서 담당자가 얼마나 능동적인지에 따라 할 수 있는 일이 많아집니다. 정말 독특한 문화를 가졌죠.팀 분위기는 어떤가요?여기서는 다양한 프로젝트에 대해 데이터를 조사하고 돌파구를 찾아야 합니다. 초집중해야 하며 테스트를 수행하고 데이터를 분석하는 방법을 발견해야만 합니다. 올바른 의사 결정을 내리는 것은 쉬운 일이 아니기 때문에 데이터 애널리스트가 필요하죠. 이 역할이 왜 필요한지 사람들이 알 수 있도록 자신을 잘 표지셔닝을 해야 합니다. 그래야 새로운 프로젝트에 참여할 수 있는 기회가 더 많아지고 기업 성장에 더욱 직접적으로 기여할 수 있죠.좋은 데이터 애널리스트는 어떤 사람일까요?# 커뮤니케이션 데이터 애널리스트는 효과적으로 딱 필요한 말만 잘 전달하는 커뮤니케이터가 되어야 합니다. 같은 말을 반복하거나 요점에서 자꾸 벗어나면 안 되죠. 버즈빌에서 데이터 분석가로 일하려면 다양한 팀과 일하기 때문에 소통을 효과적으로 잘해야만 합니다. 그래야 데이터 연구 결과가 정확할 수 있기 때문이죠. 이는 더 나은 비즈니스 의사 결정으로 이어지죠.#적극성 데이터 애널리스트는 능동적일수록 더 성장할 것입니다. 당신의 역량이 향상될 것이고 되고 직장에서 다양한 사람들과 상호작용하는 요령을 익힐 수 있습니다. 버즈빌은 데이터 애널리스트가 다양한 연구를 수행하기 좋은 인프라를 갖추고 있는데 이것은 데이터 분석이 새로운 분야라는 점에서 매우 플러스입니다. 따라서 버즈빌은 새로운 기회를 얼마든지 제공할 수 있기 때문에 탐험을 즐기는 사람을 찾고 있습니다.*버즈빌은 현재 채용 중입니다. (전문연구 요원 포함) 자세한 내용은 아래 버튼을 눌러주세요!모바일 잠금화면 미디어 플랫폼 사업자 버즈빌은 어떠한 인재를 찾는지 지원자에게 잘 알리려고 노력합니다. 그럼 지원자도 버즈빌이 자신에게 맞는 기업인지 알 수 있을 테니까요. Buzzvil Career에서는 각 직무에 대해 더욱 심도 있는 정보를 제공합니다. 현재 채용에 관련한 자세한 내용은 여기에서도 확인 가능합니다. 이 게시물은 데이터 애널리스트 Elia와의 인터뷰를 담고 있습니다. 그는 좋은 데이터 애널리스트는 어떤 사람인지에 대해 이야기합니다. 데이터를 좋아하고 데이터에 기반한 기업 성장에 기여하고 싶다면 이 글에 주목해주세요.업무에 대해 설명해주세요.안녕하세요. 버즈빌의 데이터 애널리스트 Elia입니다. 팀에서 일한 지 어느덧 4년이라는 세월이 흘렀네요. 데이터 분석을 위한 툴을 세팅하고 많은 양의 가공된 데이터를 공유하고 있습니다. 데이터로 무엇을 하고 어떻게 활용할지 고민하는 것이 제 일입니다. 또 저는 올바른 결정을 내리고 효율적으로 업무를 수행할 수 있도록 A/B 테스팅과 다양한 연구를 수행하고 있습니다. 마지막으로 SQL 세션을 열어서 사람들이 데이터에 유연하게 접근하고 잘 사용할 수 있도록 합니다.왜 버즈빌을 선택 했나요?가까운 지인이 이 회사를 추천해줬습니다. 분위기가 친근했고 한국에도 이런 곳이 있다는 게 놀라웠습니다. 그리고 버즈빌은 석촌 호수 바로 앞에 있어서 전망이 훌륭한데 특히 봄이 되면 벚꽃을 볼 수 있습니다. 그리고 무엇보다 사무실은 저희 집과 가깝습니다. 그러니 제가 거절할 이유가 없었죠.버즈빌은 어떤 곳인가요?버즈빌은 데이터 애널리스트로서 성장할 수 있는 곳입니다. 팀 규모가 그렇게 크지 않아서 유연합니다. 많은 사람과 이야기를 할 수 있고 사람들을 어떻게 도울 수 있을지, 어떤 일을 이루어야 하는지 스스로 고민할 수 있기 때문에 컨설턴트 같은 존재입니다. 그만큼 특정 역할에 고정되지 않습니다. 데이터 분석은 새로운 분야입니다. 그래서 회사가 그것을 어떻게 생각하는지에 따라 담당자가 할 수 있는 일이 달라집니다. 다행히 버즈빌리언은 새로운 아이디어와 제안에 개방적인 태도를 보입니다. 버즈빌처럼 새로운 분야를 배우는 걸 좋아하는 집단도 없을 겁니다. 그래서 담당자가 얼마나 능동적인지에 따라 할 수 있는 일이 많아집니다. 정말 독특한 문화를 가졌죠.팀 분위기는 어떤가요?여기서는 다양한 프로젝트에 대해 데이터를 조사하고 돌파구를 찾아야 합니다. 초집중해야 하며 테스트를 수행하고 데이터를 분석하는 방법을 발견해야만 합니다. 올바른 의사 결정을 내리는 것은 쉬운 일이 아니기 때문에 데이터 애널리스트가 필요하죠. 이 역할이 왜 필요한지 사람들이 알 수 있도록 자신을 잘 표지셔닝을 해야 합니다. 그래야 새로운 프로젝트에 참여할 수 있는 기회가 더 많아지고 기업 성장에 더욱 직접적으로 기여할 수 있죠.좋은 데이터 애널리스트는 어떤 사람일까요?# 커뮤니케이션 데이터 애널리스트는 효과적으로 딱 필요한 말만 잘 전달하는 커뮤니케이터가 되어야 합니다. 같은 말을 반복하거나 요점에서 자꾸 벗어나면 안 되죠. 버즈빌에서 데이터 분석가로 일하려면 다양한 팀과 일하기 때문에 소통을 효과적으로 잘해야만 합니다. 그래야 데이터 연구 결과가 정확할 수 있기 때문이죠. 이는 더 나은 비즈니스 의사 결정으로 이어지죠.#적극성 데이터 애널리스트는 능동적일수록 더 성장할 것입니다. 당신의 역량이 향상될 것이고 되고 직장에서 다양한 사람들과 상호작용하는 요령을 익힐 수 있습니다. 버즈빌은 데이터 애널리스트가 다양한 연구를 수행하기 좋은 인프라를 갖추고 있는데 이것은 데이터 분석이 새로운 분야라는 점에서 매우 플러스입니다. 따라서 버즈빌은 새로운 기회를 얼마든지 제공할 수 있기 때문에 탐험을 즐기는 사람을 찾고 있습니다.*버즈빌은 현재 채용 중입니다. (전문연구 요원 포함) 자세한 내용은 아래 버튼을 눌러주세요!버즈빌과 함께하고 싶은 분은 지금 바로 지원 해주세요! (전문연구요원 포함)

기업문화 엿볼 때, 더팀스

로그인

/