스토리 홈

인터뷰

피드

뉴스

조회수 697

Android Wear 개발하기

비트윈 팀은 지난달 비트윈에 Android Wear 앱 기능을 릴리즈했습니다. 즐거운 개발 경험이었지만, 힘들었던 점도 많았습니다. 어떤 과정을 통해서 개발하게 되었고, 내부 구조는 어떻게 되어 있는지, 신경 쓰거나 조심해야 할 점은 어떤 것들이 있는지 저희의 경험을 공유해보려고 합니다. 이 글을 통해 Android Wear 앱 제작을 고민하는 개발자나 팀이 더 나은 선택을 하는 데 도움이 되고자 합니다.Android Wear에 대해¶Android Wear는 최근 발표된 구글의 새 웨어러블 플랫폼입니다. 공개된 지 얼마 되지 않았음에도 불구하고 완성도 있는 디바이스들이 출시된 상태이며, 기존의 웨어러블 기기보다 기능과 가격이 매력 있다는 평가를 받고 있습니다. 또한, 2014 Google I/O에서 크게 소개되고 시계를 참가자들에게 나눠주는 등, 구글에서 강하게 밀어주고 있기 때문에 상당히 기대되는 플랫폼입니다.Android Wear의 알림 기능은 연결된 mobile1 기기와 연동됩니다. 예를 들어 메시지를 받았을 때 mobile과 wear에서 모두 알림을 받아볼 수 있고, Google Now와 연동하여 교통, 날씨 등 상황에 맞는 알림을 제공합니다.또, 여러 가지 앱들의 다양한 기능을 음성으로 제어하도록 하여 사용자에게 기존의 시계와는 완전히 다른 경험을 주고 있습니다.한국에서는 Google Play Store의 기기 섹션에서 구매가 가능합니다.Android Wear 개발하기¶Android Wear는 Android 플랫폼을 거의 그대로 사용하기 때문에, Android 개발 경험이 있는 개발자라면 아주 쉽게 개발을 시작할 수 있습니다. 비트윈에서는 구글의 80:20 프로젝트를 패러디한 100+20 프로젝트를 통해 개발을 진행하게 되었습니다. (하던 일을 다 해내면서 시간을 내어 진행한다는 의미로 100+20 프로젝트입니다. 하지만 가끔은 '20' 부분에 너무 몰입하여 0+20이 되기도 한다는 게 함정입니다...)Activity, Service 등 Android의 기본 component들을 모두 그대로 사용 가능하며, 손목에 찰 수 있는 크기의 화면에서 유용하게 사용할 수 있는 WearableListView, GridViewPager 같은 새 widget들이 추가되었습니다. 구글 개발자 사이트의 wearable training 섹션에서 자세한 안내를 볼 수 있습니다.비트윈의 아이디어¶비트윈 Android Wear 기능의 컨셉은, 항상 몸에 착용하는 Wear의 특징을 살려, '커플이 떨어져 있더라도, 항상 함께 있는 느낌을 주기' 였습니다. 그래서 아래와 같은 기능들이 기획되었습니다.Feel His/Her Heart (그대의 심장박동 느끼기): 상대방의 심장박동을 진동으로 재현해주기Where He/She Is (그/그녀는 어느 방향에 있을까?): 상대방의 위치를 나침반과 같은 형태로 보여주기 (안심하세요. 여러분. 방향만 알려주고 정확한 위치는 알려주지 않습니다!)Feel Memories (메모리박스): 언제든 추억을 떠올릴 수 있도록 비트윈의 기존 기능인 메모리박스(추억상자)를 Android Wear에서 구현하지만 이 아이디어들은 하루 만에 망하게 됩니다.메인 아이디어였던 심장박동 느끼기는 사용자가 요청하면 상대방의 시계에서 심장박동이 측정되어 사용자에게 상대방의 심장박동을 진동으로 재현해주는 멋진 기능이었습니다. 하지만 이 아이디어를 낼 때 심박센서가 탑재된 Android Wear 기기가 없었던 게 함정이었습니다.다음날 Android Wear Bootcamp에 참가하여 심박센서가 작동하는 삼성 Gear Live 기기를 사용해 볼 수 있었습니다. 결과는 충격이었습니다. 생각과는 달리 심박박동 측정 결과가 나오는데 10~20초가 걸리고, 그나마도 측정되는 동안은 올바른 위치에 시계를 차고 가만히 있어야 했습니다. 결국, 이러한 제약 때문에 사용자들이 실제로 유용하게 사용할 수 있는 기능이 될 수 없었습니다.그래서 계획을 수정하여 현실적으로 구현 가능한 기능들을 먼저 만들어 보기로 했습니다.목소리로 답변하기: 상대방에게 온 메시지에 Android Wear Framework에서 제공하는 음성인식을 이용하여 목소리를 텍스트로 바꾸어서 답장하기이모티콘 답변하기: 이모티콘을 사용자가 선택하여 이모티콘으로 답장하기비트윈 메모리박스: 비트윈의 기존 기능인 메모리박스(추억상자)를 Android Wear에서 구현처음의 원대한 계획에서 뭔가 많이 변경된 것 같지만, 기분 탓일 겁니다.내부 구현¶비트윈 Android Wear 앱은 크게 두 가지 기능을 가지고 있습니다. 하나는 상대방에게 메시지를 받았을 때, 메시지 내용을 확인하고 여러 가지 형태로 답장할 수 있는 Notification 기능이고, 다른 하나는 Wear에서 원래 Application의 일부 기능을 시작 메뉴를 통하거나 목소리로 실행시킬 수 있게 해주는 Micro App입니다. 해당 기능들의 스크린샷과 함께 내부 구조를 설명하겠습니다.우선 Notification 부분입니다. 앱 개발사에서 아무 작업도 하지 않더라도, 기본적으로 Android Wear Framework이 스크린샷 윗줄 첫 번째, 네 번째 화면과 같이 예쁜 알림화면과 Open on phone 버튼을 만들어 줍니다. 여기에 추가적인 기능을 붙이기 위하여 WearableExtender를 이용하여 목소리로 답장하기, 이모티콘 보내기 버튼을 덧붙였습니다.비트윈 Android Wear 스크린샷 - Notification둘째로는 Micro App 부분입니다. 여기에는 이모티콘 전송과 메모리박스를 넣었습니다. 이 부분은 일반적인 Android 앱을 만들듯이 작업할 수 있습니다비트윈 Android Wear 스크린샷 - Micro App화면을 보면 무척 단순해 보이지만 내부 구조는 간단하지가 않습니다. 연결된 화면들을 만들어내는 코드가 한곳에 모여있지 않고, 각기 다른 곳에 있는 코드들을 연결하여야 하기 때문입니다. Notification 하나를 만들 때에 Framework에서 만들어주는 1, 4번째 화면, Notification에 WearableExtender를 이용하여 덧붙이는 2, 3번째 화면, 그리고 다시 Framework에서 만들어주는 목소리로 답장하기 화면, 그리고 Wear 쪽의 Micro App을 통해 구동되는 이모티콘 선택 화면과 같이 여러 군데에 나누어 존재하는 코드가 연결됩니다.하나의 앱처럼 느껴지는 화면이지만 각각 다른 곳에 코드가 쓰여있습니다.그러면 이번에는 각 화면이 어떻게 연결되는지 알아보겠습니다.사용자가 상대방으로부터 받은 메시지를 Android Wear의 Notification으로 확인하고, 답장으로 이모티콘을 보내고자 하는 상황을 가정해 봅시다. 사용자가 Send Emoticon 버튼을 눌렀을 때 이모티콘 선택화면을 보여주고 싶은데, 이 행동에 대한 pending intent를 wear 쪽의 micro app이 아닌, mobile 쪽에서 받게 되어 있습니다. 이 때문에 아래의 표와 같이 mobile 쪽에서 pending intent를 받은 뒤 다시 wear 쪽으로 이모티콘 선택 화면을 보여주라는 메시지를 전송해줘야 합니다.이모티콘 전송 과정이번에는 메모리박스를 보겠습니다. 메모리박스도 단순한 화면이지만 mobile 쪽과 통신하여 내용을 불러와야 하므로 생각보다 해야 하는 일이 많습니다. Android Wear Message API와 Data API를 이용하여 데이터를 주고받아 사진을 화면에 보여줍니다.메모리박스를 보여주는 과정개발 시 신경 써야 하는 점¶개발하면서 주의 깊게 신경 써야 하는 점들이 있습니다.첫 번째로 코드 퀄리티입니다.Android Wear는 아직 성숙하지 않은 플랫폼이기 때문에 많은 사람이 받아들인 정형화된 패턴이 없습니다. 앞서 살펴보았듯이, 간단한 기능을 구현하려고 해도 상당히 복잡한 구조를 가진 앱을 만들게 되기에, 코드 퀄리티를 높게 유지하기 어려웠습니다비트윈 팀에서는 EventBus를 활용하여 코드를 깔끔하게 유지하려고 노력하였습니다. 이러한 문제를 해결할 수 있는 Guava의 Concurrent 패키지나, RxJava 등의 도구들이 있으니 익숙한 도구를 선택하여 진행하는 것을 추천합니다. 또한, 구글의 Android Wear 코드랩 튜토리얼의 내용이 매우 좋으니, 한번 처음부터 수행해 보면 좋은 코드를 만들 수 있는 아이디어가 많이 나올 것입니다.두 번째로는 원형 디바이스 지원 및 에러 처리입니다.처음부터 원형 디바이스를 신경 쓰지 않으면 마무리 작업 시 상당한 고통을 받게 됩니다. 원형 디바이스에 대한 대응법은 Android 개발자 트레이닝 사이트의 wearable layout 섹션에 자세히 나와 있습니다. 현재는 원형 디바이스를 처리하는 프레임웍에 약간 버그가 있지만, 곧 수정될 것으로 생각합니다.사용자 입력이 있을 때, 그리고 에러가 났을 때 적절하게 처리해주는 것은 제품의 완성도에 있어 중요한 부분입니다. Android Wear Framework에서 제공하는 ConfirmationActivity등을 활용하여 처리하면 됩니다.마지막으로 패키징입니다.자동 설치 패키징은 비트윈 팀에서도 가장 고생했던 부분입니다. Android Wear는 본체 앱을 설치하면 자동으로 함께 설치되는데, 앱이 정상작동하기 위해서는 몇 가지 까다로운 조건이 있습니다.build.gradle 의 applicationId 를 wear와 mobile 양쪽 모두 똑같이 맞춰야 합니다.Wear app의 AndroidManifest에 새롭게 선언한 permission이 있다면 mobile 쪽에도 포함해 주어야 합니다.기본적으로, 똑같은 key로 서명합니다. 다른 key로 sign 하는 경우는 문서를 참고해서 신경 써서 합니다.위 항목들은 아주 중요한 내용이지만 아직 문서화가 완벽하지 않으니 주의 깊게 진행해야 합니다.후기¶개발 과정에서 여러 가지 어려움이 있었지만, 무척 즐거웠던 프로젝트였습니다!우선 새로운 플랫폼에서 새로운 제품의 아이디어를 내고 만들어내는 과정이 많은 영감과 즐거움을 주었습니다.두 번째로는 Android Wear를 포함한 버전 출시 이후 구글플레이의 Android Wear 섹션 및 추천 앱 섹션에 올라가게 되어 홍보 효과도 얻을 수 있었습니다. 또한, 구글의 신기술을 적극적으로 사용하고자 하는 팀에게는 구글 쪽에서도 많은 지원을 해주기 때문에 도움도 많이 받았습니다.세 번째로는 기존의 Android 개발과 비슷하여 접근하기 쉬우면서도, 원하는 것을 구현하려면 상당히 도전적이어서 재미있었습니다.다만 조심해야 할 점은, 구글에서 적극적으로 밀고 있는 프로젝트라고 해서 다 성공하는 것은 아니라는 점입니다. 얼마만큼의 시간과 자원을 투자할지는 신중하게 생각하면 좋겠습니다.정리¶Android Wear는 새로운 기술과 플랫폼에 관심이 많은 개발자, 혹은 팀이라면 시간을 투자해서 해볼 만한 재미있는 프로젝트입니다. 하지만 완성도 있는 좋은 제품을 만들기 위해서는 생각보다 할 일이 많으니 이를 신중하게 고려하여 결정해야 합니다.구글의 튜토리얼 등에서 지칭하는 것과 마찬가지로, 이 글에서도 Android Wear와 연결된 휴대폰을 mobile이라 하겠습니다.↩저희는 언제나 타다 및 비트윈 서비스를 함께 만들며 기술적인 문제를 함께 풀어나갈 능력있는 개발자를 모시고 있습니다. 언제든 부담없이 jobs@vcnc.co.kr로 이메일을 주시기 바랍니다!
조회수 2346

JANDI 검색엔진 도입기

이번 포스트에서는 JANDI가 검색엔진을 도입하게 된 배경과 어떤 작업을 했는지 공유하려고 합니다검색엔진 도입 배경JANDI는 사용자가 입력한 메시지를 검색하고 사용자가 올린 파일의 파일명/파일 타입을 검색하는 메시지/파일 검색 기능을 제공하고 있습니다. 데이터 저장소로 MongoDB를 사용하고 있는데 검색되는 필드에 인덱스를 걸고 정규 표현식을 이용하여 DB Like 검색(“DB는 검색을 좋아한다”아니에요;;)을 하고 있습니다.초기에는 데이터가 아담했는데, 서비스가 커감에 따라 사용자 증가하면서 생성되는 데이터도 많아졌습니다. 올 초에 데이터가 많아지면서 검색이 DB에 부하를 주고, JANDI 서비스에도 영향을 주게 되었습니다. 그래서 JANDI 서비스용 MongoDB와 검색 전용 MongoDB를 분리했는데 이는 임시방편이었고 언젠가는 꼭 검색엔진을 도입하자며 마무리를 지었습니다.시간은 흘러 흘러 4월이 되었습니다. 당시 메시지 증가량을 봤을 때 올해 안에 검색엔진을 사용하지 않으면 서비스에 문제가 될 거라고 판단이 되어 도입을 진행하게 되었습니다.검색엔진 도입의 목표는 다음과 같았습니다.현재 DB Like 검색과 비슷한 검색 품질이어도 좋다. (일정때문에)검색엔진 도입을 통해 검색이 JANDI 서비스에 영향을 주지 않도록 한다.색인을 위해서 주기적으로 JANDI의 MongoDB 데이터를 가져 와야 했지만, 이 작업이 JANDI 서비스에 큰 부하를 주지 않을 거라고 생각했습니다.검색엔진 후보로는 Solr, ElasticSearch, CloudSearch, ElasticSearch Service 가 있었는데 Solr를 선택했습니다.왜냐하면제가 경험한 검색엔진이 Solr 였습니다. 더군다나 2010년 초에 접했던 Solr 비해 많이 발전한 것 같아 개발자로서의 열정과 도전 욕구가 샘솟았습니다. SolrCloud pdf, WhyNoWarAWS에서 제공하는 검색 서비스는 많은 부분을 관리해준다는 면에서 솔깃했지만, Custom Analyzer는 적용할 수 없어서 선택하지 않았습니다.ElasticSearch에 크게 흔들렸지만 경험이없다 보니 공부하면서 프로젝트를 진행한다는 부담감이 커서 다음을 기약했습니다.작업 내용1. MongoImporter, Sharding. MongoImporter 수정현재 JANDI는 MongoDB를 데이터 저장소로 사용하고 있습니다. MongoDB의 데이터를 색인하기 위해 데이터를 검색엔진으로 가져와야 하는데 Solr에서는 DataImportHandler 기능을 제공하고 있습니다. 기본 DataImportHandler로 RDB 데이터는 가져올 수 있지만 이 외 MongoDB나 Cassandra 같은 NoSQL의 데이터를 가져오기 위해서는 따로 구현이 필요합니다. 구글신에게 물어봐서 SolrMongoImporter 프로젝트를 찾았는데 문제가 있었습니다. mongo-java-driver 버전이 낮아서(2.11.1) 현재 JANDI에서 서비스 되고 있는 MongoDB(3.0.x)의 데이터를 가져올 수 없었습니다.url: Reference compatibility MongoDB Java2.11.1에서 3.2.2로 버전을 올리고 변경된 api를 적용하는 작업, 빌드 툴을 ant에서 maven으로 변경하는 작업을 하였습니다. 마음의 여유가 된다면 P/R을 할 계획입니다.여담으로 DataImportHandler 작업과 함께 검색 schema 정하는 작업을 했는데 sub-document 형식이 필요하게 되었습니다. Solr 5.3부터 nested object를 지원한다는 article을 보았는데, nested object 지원 얘기를 보니 Solr도 text search 뿐 아니라 log analysis 기능에 관심을 가지는건 아닐까 조심스레 생각해봤습니다. (역시나… 이미 banana, silk 같은 프로젝트가 있습니다. Large Scale Log Analytics with Solr 에 관련된 이야기를 합니다.). Sharding. 그리고 Document Routing대량의 데이터를 처리하기 위해 한 개 이상의 node로 구성된 데이터 베이스에 문서를 나누어 저장하는 것을 sharding이라고 합니다. SolrCloud는 shard 생성/삭제/분리할 수 있는 API가 있고, 문서를 어떻게 나눌지 정할 수 있습니다. 어떻게 나눌지는 shard 생성 시 router.name queryString에 개발한 router 이름을 적어주면 됩니다. 그렇지않으면 Solr에서 murmur Hash 기반으로 문서를 나누는 compositeId router를 사용합니다. JANDI의 검색 기능은 Team 단위로 이루어지기 때문에 TeamId를 기준으로 문서를 나누기로 하고, compositeId Router를 사용했습니다. 실제 서비스의 문서 데이터를 색인 돌려서 각 node에 저장되는 문서 개수나 메모리/디스크 사용량을 확인했는데 다행히도 큰 차이가 나지 않았습니다.하나의 문서는 TeamId와 MessageId를 조합한 “TeamId + ! + MessageId” 값을 특정 field에 저장하고 해당 필드를 uniqueKey 지정했습니다. 간단한 수정으로 문서 분배가 되는점이 좋았고, 더 좋았던건 검색시 _route_ 를 이용해서 실제 문서가 존재하는 node에서만 검색을 한다는 점이 었습니다. 4년 전 제가 마지막으로 Solr를 사용했을 때는 사용자가 직접 shards queryString에 검색할 node를 넣어주어야 했습니다..../select?q=\*:\*&shards=localhost:8983/solr/core1,localhost:8984/solr/core1SolrCloud RoutingSolrCloud Routing2Multilevel CompositeId2. analyzer, queryParser. analyzerSolr에 기본으로 있는 text_cjk analyzer를 사용하였습니다. <!-- normalize width before bigram, as e.g. half-width dakuten combine --> <!-- for any non-CJK --> text_cjk는 영어/숫자는 공백/특수기호 단위로 분리해주고 cjk는 bigram으로 분리해주는 analyzer 입니다. analyzer는 이슈 없이 완성될 거라 생각했지만 오산이었습니다. 텍스트가 들어오면 token을 만들어주는 StandardTokenizerFactory 에서 cjk와 영어/숫자가 붙어있을 때는 분리하지 못해 원하는 결과가 나오지 않았습니다. 또한 특수기호중에 ‘.’(dot), ‘_‘(underscore)가 있을 때에도 분리하지 못했습니다.nametextInputTopic검색개선_AB1021_AB제시CD.pdfStandardTokenizerFactoryTopic검색개선_AB1021_AB제시CD.pdfCJKWidthFilterFactoryTopic검색개선_AB1021_AB제시CD.pdfLowerCaseFilterFactorytopic검색개선_ab1021_ab제시cd.pdfCJKBigramFilterFactorytopic검색개선_ab1021_ab제시cd.pdf원하는 결과topic 검색개선 ab 1021 ab 제시 cd pdf그래서 색인/검색 전에 붙어있는 cjk와 영어/숫자사이에 공백을 넣어주고 ‘.’와 ‘_‘를 공백으로 치환해주는 작업을 하였습니다. 색인은 Transform에서 처리하고 검색은 다음에 알아볼 QParserPlugin에서 처리했습니다.nametextInputTopic검색개선_AB1021_AB제시CD.pdfTransform 단계Topic 검색개선 AB 1021 AB 제시 CD pdfStandardTokenizerFactoryTopic 검색개선 AB 1021 AB 제시 CD pdfCJKWidthFilterFactoryTopic 검색개선 AB 1021 AB 제시 CD pdfLowerCaseFilterFactorytopic 검색개선 ab 1021 ab 제시 cd pdfCJKBigramFilterFactorytopic 검색개선 ab 1021 ab 제시 cd pdf※ 추가 : 검색 결과를 보여줄때 어떤 키워드가 매칭되었는지 Highlight 해야했는데, 색인하기 전에 원본을 수정을 해서 Solr에서 제공하는 Highlight를 사용하지 못하게 됐습니다. 눈 앞의 문제만 바라보고 해결하기 급급했던 저를 다시금 반성하게 되었습니다.. queryParser앞에서도 언급하였지만, 색인뿐만 아니라 검색할 때도 검색어가 입력되면 검색하기 전에 붙어있는 cjk와 영어/숫자를 분리하고 ‘.’, ‘_‘를 공백으로 치환해주는 작업이 필요합니다. Solr에서 기본으로 사용하는 LuceneQueryParserPlugin 을 수정하였습니다.@Override public Query parse() throws SyntaxError { // 수정한 코드 String qstr = splitType(getString()); if (qstr == null || qstr.length() == 0) return null; String defaultField = getParam(CommonParams.DF); if (defaultField == null) { defaultField = getReq().getSchema().getDefaultSearchFieldName(); } lparser = new SolrQueryParser(this, defaultField); lparser.setDefaultOperator (QueryParsing.getQueryParserDefaultOperator(getReq().getSchema(), getParam(QueryParsing.OP))); return lparser.parse(qstr); } QParserPlugin3. DataImportHandler manageMongoImporter에서도 얘기했지만 Solr에서는 DB 데이터를 가져오는 DataImportHandler 기능을 제공 하고 있습니다. DataImportHandler Commands를 보면 총 5개의 명령을 제공하고 있는데, 그중 색인을 실행하는 명령은 full-import와 delta-import입니다. full-import 명령은 DB의 모든 데이터를 색인 하는 것을 말합니다. 색인 시작할 때의 시간을 conf/dataimport.properties에 저장하고 이때 저장한 시간은 delta-import 할때 사용됩니다. 전체 색인한다고 말합니다. delta-import 명령은 특정 시간 이후로 생성/삭제된 데이터를 색인 하는 것을 말합니다. 특정 시간이란 full-import 시작한 시간, delta-import가 최근 종료한 시간을 말합니다. full-import와는 다르게 delta-import가 종료된 시간을 conf/dataimport.properties에 저장합니다. 증분 색인 혹은 동적 색인이라고 하는데 여기서는 증분 색인이라고 얘기하겠습니다. 두 명령을 이용하여 JANDI의 메시지/파일을 색인 하기 위한 삽질 경험을 적었습니다.. 첫 번째 삽질full-import는 현재 active인 데이터를 가져올 수 있도록 query attribute에 mongo query를 작성하고, delta-import 는 특정 시간 이후에 생성된 데이터를 가져올 수 있도록 deltaQuery attribute에 mongo query를 작성합니다. 또한 deltaQuery로 가져온 id의 문서를 가져올 수 있도록 deltaImportQuery attribute에 mongo query를 작성하고, 특정 시간 이후에 삭제된 데이터를 가져올 수 있도록 deletedPkQuery 에도 mongo query를 작성합니다.<!-- data-config.xml --> <?xml version="1.0" encoding="UTF-8" ?> 정상적으로 동작은 했지만, 색인 속도가 실제 서비스에 적용하기 힘들 정도였습니다. 실행되는 mongo query를 확인했는데 다음과 같이 동작하였습니다.특정 시간 이후에 생성된 데이터를 색인하기 위해 약 (새로 생성된 문서개수 + 1) 번의 mongo query가 실행되었습니다. (batch size와 문서 갯수에 따라 늘어날 수도 있습니다.) 메신저 서비스 특성상 각각의 문서 크기는 작지만 증가량이 빠르므로 위 방식으로는 운영 할 수 없었습니다. 그래서 delta-import using full-import 를 참고해서 두 번째 삽질을 시작 하였습니다.. 두 번째 삽질full-imoprt 명령을 실행할 때 clean=false queryString을 추가하고 data-config.xml query attribute를 수정하는 방법으로 증분 색인 하도록 수정했습니다. 특정 시간 이후 생성된 문서를 가져오는 attribute인 deltaQuery와 deltaImportQuery 는 필요가 없어 지웠습니다.<!-- data-config.xml --> <?xml version="1.0" encoding="UTF-8" ?> <!-- if query="" then it imports everything --> 전체 색인은 /dataimport?command=full-import&clean=true 로 실행하고, 증분 색인은 /dataimport?command=full-import&clean=false(생성된 문서)와 …/dataimport?command=delta-import&commit=true(삭제된 문서)로 실행하도록 했습니다.정상적인 것 같았지만, 문제가 있었습니다.full-import, delta-import 명령을 실행하면 conf/dataimport.properties 파일에 전체 색인이 실행한 시작 시각 혹은 증분 색인이 최근 종료한 시간이 “last_index_time” key로 저장됩니다. 첫 번째 삽질에서 증분 색인시 delta-import 명령 한 번으로 생성된 문서와 삭제된 문서를 처리했지만, full-import와 delta-import 두개의 명령으로 증분 색인이 동작하면서 생성된 문서를 처리할 때도 last_index_time이 갱신되고 삭제된 문서를 처리할 때도 last_index_time이 갱신되었습니다.예를 들면증분색인 동작이 1분마다 삭제된 문서를 처리하고, 5분마다 생성된 문서를 처리 한다고 가정해보겠습니다. 3시 13분 14초에 delta-import가 완료되어 last_index_time에 저장되고, 다음 delta-import가 실행되기 전 3시 13분 50초에 full-import가 완료되어 last_index_time이 갱신되었다면, 3시 13분 14초부터 3시 13분 50초 사이에 삭제된 문서는 처리를 못 하는 경우가 발생합니다.Solr에서 dataimport.properties에 기록하는 부분을 수정하는 방법과 전체/증분 색인을 동작시키는 Solr 외부에서 특정 색인 시간을 관리하는 방법이 있었는데 Solr를 수정하는 건 생각보다 큰 작업이라 판단되어 외부에서 관리하는 방법으로 세 번째 삽질을 시작하였습니다.. 세 번째 삽질전체/증분 색인을 주기적으로 동작 시키는 곳에서 full-import&clean=false(생성된 문서) 처리할 때 필요한 마지막으로 색인 된 문서 id와 delta-import(삭제된 문서) 처리할 때 필요한 마지막으로 색인 된 시간을 관리하도록 개발하였습니다. 증분 색인 시 full-import&clean=false를 실행하기 전에 현재 색인 된 마지막 id 조회 후 해당 id보다 큰 데이터를 처리하도록 하였고, delta-import를 마지막으로 마친 시간을 따로 저장하다가 delta-import 실행 시 해당 시간을 전달하는 방법으로 수정하였습니다.<!-- data-config.xml --> <?xml version="1.0" encoding="UTF-8" ?> 마치며튜닝의 끝은 순정이라는 말이 있는데 IT 기술은 예외인 것 같습니다. 현재는 Solr의 기본 기능만으로 구성했지만, 고객에게 더 나은 서비스를 제공할 수 있는 시작점으로 생각하고, JANDI 서비스에 맞게 끊임없이 발전해나가겠습니다.감사합니다.참고Getting Started with SolrApache Solr 5.5.0 Reference Guide PDFApache Solr 6.1 - Analyzers, Tokenizers and FiltersRebalance API for SolrCloud issueYonik Blog#토스랩 #잔디 #JANDI #개발자 #개발팀 #개발후기 #인사이트
조회수 2224

[H2W@NL] 로봇과 디자인

디자인이란 단어가 이제는 어디서나 익숙합니다. 그만큼 디자인의 정의와 역할은 다양한 영역에서 분화되어 있기도 합니다. 네이버랩스에서는 로봇이라는 대상에 대해 여러 분야의 디자인이 진행되고, 종국에는 통합됩니다. 하나의 로봇으로 이어지는, 로봇시스템/UX/ID 각각의 디자인에 대해 물었습니다.Q. 어떤 ‘디자인’을 하나요?로봇의 메커니즘에서 인터페이스까지, 최적의 시스템을 디자인(김인혁|Robot) 제가 하는 디자인은, 시스템 디자인이라고 말할 수 있습니다. 아, 물론 제가 속한 Robot팀엔 더 많은 디자인 과정들이 있어요. 로봇의 기구, 전장, SW 등 각각의 영역에서도 디자인 과정이 존재합니다. 저는 그 중에서 주로 시스템 제어 엔지니어로서의 디자인을 이야기할 수 있겠네요.사실 시스템이란 말이 좀 모호하죠. 과학분야에선 이렇게 정의할 수 있습니다. 구성 요소들이 내외부와 경계를 가진 상태에서 각 요소 간에 긴밀한 상호작용을 하는 집합체. 쉽게 설명하고 싶었는데, 여전히 어렵긴 하네요.로봇은 단순한 기능을 구현할 때에도 복잡한 요소들이 동시에 작동합니다. 메커니즘, 동력원, 에너지원, 제어기와 인터페이스 등. 이들이 서로 잘 연결되어 작동할 수 있어야 합니다. 이를 위한 최적의 시스템을 구성하는 디자인이라 하겠습니다.로봇, 그리고 사람, 그 사이에서의 상호작용(김석태|UX) UX의 입장에서는 HRI (human-robot interaction) 디자인이라고 정의할 수 있습니다. 앱이나 웹 등의 화면 기반 인터페이스와는 조건이 다른데요. 물리 공간에서 로봇이 동작한다는 점이 그렇습니다. 주변 사물이나 사람을 로봇이 인식하는 순간처럼 다양한 상황에서 로봇이 어떻게 동작하거나 반응해야 하는지, 그리고 로봇을 활용한 서비스는 다른 디바이스나 앱과 달리 어떤 방식을 통해 제공되어야 더욱 직관적으로 사람과 상호작용이 가능한지 등을 디자인하고 있습니다.기술만큼, 인상과 매력도 중요하다(김승우|ID) 로봇의 외관도 중요합니다. 로봇은 여전히 일반인들에겐 생소합니다. 이들에게 로봇은 흥미로움을 일으키는 대상일 수도 있지만, 마주치는 순간 기피하고 싶은 이질적 존재일 수도 있어요. 그래서 외관을 통해 느끼는 인상과 그 효과에 대해 세심한 접근을 하고 있습니다. 로봇 서비스가 보편화되지 않은 시점에서는, 사람들이 기대하는 로봇다운 매력을 잘 체감할 수 있게 하는 것도 로봇 대중화를 위해 중요한 역할인 것 같습니다.“기술이 지닌 본래의 가치를 더욱 잘 느낄 수 있도록 전달하는 것, 그것도 디자인의 역할입니다.” Q. 어떤 프로세스로 작업하나요?단순한 목표를 위해 필요한 복잡한 과정들(김인혁|Robot) 기본 목표라고 한다면, 일단 요구 스펙을 잘 만족하는 시스템을 설계하는 것입니다. 현실은 아주 복잡하죠. 요소들이 워낙 다양하기 때문인데요. PoC, 성능 테스트 등 평가 과정을 거치면 조정해야 할 것들이 많아집니다. 아예 새로 개발을 할지를 고민하게 될 때도 있는데, 참고할만한 레퍼런스가 없을 때는 참 어려워집니다. 이럴 때는 원론적으로 풀 수밖에 없죠. 공학적인 문제부터 정의하고 문제 해결을 위한 방법론을 탐색합니다. 이런 일들이 수없이 많지만, 시스템 디자인의 일반적인 프로세스이기도 합니다. 목표는 단순하지만, 과정은 현란하죠.산업을 이해하면 목표가 보이고, 사람을 이해하면 디테일이 보인다(김석태|UX) 앞서 말씀드린 것처럼, 서비스 로봇은 다른 앱/웹 서비스와 상황이 많이 다르죠. 앱이라면 프로토타이핑과 검증 과정을 상당히 빠른 주기로 반복할 수 있는데, 로봇은 그런 면에서는 제약이 있습니다.일단 로봇 서비스 산업에 대한 이해부터 시작하였습니다. 그간 어떤 로봇들이 어떤 서비스를 했고, 학계에서는 어떤 연구들이 선행 되었는지를 꼼꼼히 연구했습니다. 그리고 나니 목표 수준이 좀 더 명확해지고, 시나리오를 구체화할 수 있었습니다.중요한 건 역시 사람에 대한 이해입니다. 실제로 유용하다고 느낄까? 어떤 니즈가 여전히 숨어있을까? 로봇이 대신 해 주었을 때 더 가치 있는 것은? 이런 질문에 대한 답을 찾은 후 다음 숙제가 이어집니다. 사람들의 삶 속으로 이질감없이 자연스럽게 녹아 들기 위한 인터랙션입니다. 인터랙션 상황들을 정의하는 일부터가 시작이고, 어떤 이슈나 문제가 있는지를 찾아냅니다. 가장 단순하면서도 자연스러운 해결 방법은 무엇일지 실험을 통해 검증합니다. 이 과정에서 굉장히 많은 디테일들이 새롭게 발견됩니다.기술에 대한 이해도 중요합니다. 예를 들어 최근 AROUND C에는 디자이너가 가장 이상적인 로봇의 속도 및 이동 경로를 선택하면, 이를 바탕으로 딥러닝 기술을 적용해 최적화된 자율주행을 할 수 있는 기술이 적용되어 있습니다. 지켜보는 사람이 언제 안정감을 느끼는지, 로봇과 사람이 교차할 때엔 상대 속도나 동선을 어떻게 할지, 공간상의 제약이 복합적으로 작용하면 어떤 기준을 세워야 할지 등등. 수많은 요소들 사이에서 최적의 인터랙션 디자인을 설계해야 합니다. 이런 사소해보이는 사용자 경험이 로봇 서비스 과정에서 뜻밖의 감동까지도 전달할 수 있다고 생각합니다.“우리가 추구하는 기본 방향은, 실용적이면서도 사람을 배려하는 로봇입니다. 문제 상황을 분석해 나온 다양한 해결책 중에, 사람이 직관적으로 파악할 수 있는 방법을 택합니다.” 최근에는 AROUND C에서는 gaze, sound, lighting을 통한 비언어적 커뮤니케이션을 테스트하고 있습니다. 왜 굳이 로봇이 직접 말하게 하지 않고 비언어적 커뮤니케이션을 연구할까요? 그게 서비스 시나리오 상에서 더 직관적이며, 심지어 더 똑똑해 보이기 때문입니다. 스타워즈의 R2D2와 C3PO를 떠올리시면 됩니다. 점과 선을 활용해 가장 로봇다운 눈을 디자인 했고, 이를 통해 다양한 상태 정보를 사람에게 직관적으로 전달하고자 했습니다.전체의 통일감과 개별 디자인의 완성도라는 두개의 과녁(김승우|ID) 제가 공을 들이는 건 전체 제품의 통일감과, 개별 디자인의 완성도입니다. 네이버랩스에서 그간 공개했던 제품들은 작은 디바이스부터 중형 로봇, 대형 차량 센서박스에 이르기까지 다양한 카테고리에 걸쳐 있습니다. 디자인의 토대가 되는 조형 요소인 제품의 크기와 형태, 구조가 상이하다 보니 각각의 형태와 구조적 특성을 고려하면서도 전체 제품에 통일감이 느껴지도록 하는데 많은 노력을 기울여 왔습니다. 기업에서 일관된 메시지를 전달하는 것은 그 기업을 신뢰할 수 있는가에 대한 중요한 가치라고 생각해요. 디자인도 마찬가지입니다. 네이버랩스라는 기술 기업에서 전달해야 할 가치는 ‘정밀함’과 ‘단단함’이라고 생각했고, 로봇을 포함한 전체 제품에서 이 키워드들을 담은 일관된 디자인 언어가 느껴질 수 있도록 조형의 기본이 되는 면, 면의 기본이 되는 선을 세밀하게 다듬으며 디자인했습니다.또한 개별 디자인의 완성도를 위해 밸런스와 디테일을 중요하게 생각합니다. 로봇은 움직이기 때문에 다양한 각도에서 바라보게 되고, 어느 방향에서 보아도 완성도 높은 밸런스가 특히 중요합니다. 잘 안보이는 곳의 디테일도 쉽게 드러나기 때문에 세밀한 디테일을 놓치지 않기 위해 노력하고요.로봇의 경우엔 일반인들의 디자인 완성도에 대한 기대 수준이 더 높은 편입니다. 이런 기대를 충족시키는 동시에 기술적인 요구도 충족해야 합니다. 예를 들어, AMBIDEX의 전체 디자인 균형을 잡는 과정에서 팔의 부피를 늘리는 선택이 필요했는데, 동시에 무게는 가볍게 유지해야만 로봇의 기능을 100% 발휘할 수 있었습니다. 경량성이 AMBIDEX라는 로봇 팔 기술의 핵심 특성이기 때문이죠. 외관 부피를 늘려 디자인 밸런스를 최적으로 잡으면서도 1g을 더 줄이기 위해 질량을 체크하며 표면과 두께를 조정하고, 강성을 높이는 내부 구조를 추가하며 문제를 해결했습니다. 이런 디자인 과정을 거쳤기에 외관에서도 내부의 단단함과 견고함이 배어 나온다고 생각합니다.Q. 서로 어떻게 협업을 하나요?어차피 목표는 하나(김인혁|Robot) 각기 다른 분야의 전문가들이 협업할 때의 견해차이는 프로세스를 통해 해결되어야 한다고 생각해요. 그게 아니라 의견의 일방향성이 생기면 그건 곤란하죠. 저는 각 분야의 선/후행을 두지 않고 초기부터 과정 전반에 걸쳐 계속 공유하고 의견을 나누며 서로의 수용성을 늘리는 것이 아주 중요하다고 생각해요.“한 영역의 전문가가 모든 결정을 하고 다른 분야의 전문가는 일방적으로 종속되어야 한다면, 그건 문제가 있습니다. 선행과 후행을 나누면 안됩니다. 초기부터 같이 고민하고 대화하고 함께 풀어야 합니다.” (김석태|UX) 저도 커뮤니케이션이 협업 과제를 빠르게 가속하는 가장 중요한 요소라고 봅니다. 다양한 관점에서 의견을 나누는 건 정말 필요해요. 그 과정 없이 한번에 이상적인 솔루션을 바라는 건 무리입니다. 지금 진행 중인 1784 프로젝트 역시 이러한 소통을 원활히 이어가고 있기 때문에 좋은 협업이 진행되고 있고요.(김승우|ID) 차이란 것은 자연스럽죠. 좋은 결과를 위해 필수적입니다. 궁극적인 목표를 달성하고자 한다는 동질감을 느끼기 때문에 서로의 진정성을 확인허는 과정이기도 합니다. 어떤 디자인이라도 많은 협의와 조율이 전제됩니다. 하나의 입장에 매몰되어 있는지 되돌아보기도 하고, 전체를 바라보는 기회로 삼기도 합니다.Q. 앞으로의 도전은?(김인혁|Robot) 우리의 목표는 사람에게 도움이 되는 로봇을 개발하는 것입니다. 단순하죠. 이를 기술 관점에서 고민하고, 가장 적합한 답을 찾고, 그 답을 세상과 공유하고 싶습니다. 그것이 제가 맡은 역할이라 생각하고요. 그 역할을 잘 할 수 있도록 연구개발자로서도, 프로젝트를 리드하고 완성하는 실무자로서도 역량에 깊이를 더하고 싶습니다.새로운 스탠다드라는 설레는 도전(김석태|UX) 이제는 실험실이나 전시장이 아니라, 우리가 실제 살아가는 공간으로 로봇이 들어옵니다. 그런 시대에 도달했습니다. UX디자이너로서는 완전히 새로운 기회이자 설레는 도전입니다. 한때 모바일이란 세상으로 패러다임이 이동했던 시기가 있었죠. 이제는 가상 세계에서 제공하던 다양한 서비스와 기술들이 일상의 물리 공간으로 다시 돌아올 것입니다. 서비스 로봇을 통해 이 분야의 새로운 스탠다드를 만들고 싶습니다.(김승우|ID) 네이버랩스에서는 늘 흥미로운 프로젝트들이 진행되어 왔습니다. 그 중에서도 로봇 디자인은, 다른 어느 로봇보다도 디자인 완성도가 높으며, 동시에 기능적 가치를 충실히 구현하는 것을 목표로 진행해 왔습니다. 게다가 로봇은 외관 그 자체가 하나의 강렬한 인상이자 브랜드 체험 요소가 되기 때문에 더욱 큰 책임감을 느끼고 있습니다. 네이버랩스는 기술이 강점인 회사입니다. 동시에 디자인 또한 우리의 탁월한 강점입니다. 이를 위해 앞으로도 노력하려고 합니다. 네이버랩스의 인재상은 passionate self-motivated team player입니다. 어쩌면 '자기주도적 팀플레이어'라는 말은 형용모순(形容矛盾)일 지도 모릅니다. 하지만 우린 계속 시도했고, 문화는 계속 쌓여갑니다. 다양한 분야의 전문가들이 경계없이 협력하고 스스로 결정하며 함께 도전하는 곳의 이야기를 전합니다. How to work at NAVER LABSH2W@NL 시리즈 전체보기
조회수 4429

자바스크립트 기초 문법 정리 Part 2 - 객체

지난 Part 1 포스팅에 이어 자바스크립트 기초 문법에 대해 정리해보았습니다. 이번 포스팅에서는 여러 객체와 그 객체에서 제공하는 각 메서드에 대해 정리하였습니다. 다루는 객체의 여러 메서드에 대해 정리하였기 때문에 전 포스팅처럼 간략하지는 않지만 이번 포스팅을 저장해 두고 자바스크립트로 개발하면서 필요할 때마다 참고하여 보기에는 좋을 것 같습니다. 다만, 메서드 사용 예의 코드는 넣지 않았으니 예제 부분이 필요하다면 필히 공식 문서를 참고해주세요. 익히는 것 자체도 공식 문서를 통하여 보는 것이 가장 좋지만 혹여 영어에 취약하신 분이라면 이 포스팅을 참고하는 것도 괜찮을 것 같습니다. :)내장 객체브라우저의 자바스크립트 엔진에 내장된 객체. String/Date/Array/Nath/RegExp Object 등이 있음.날짜 객체 DateDate 객체 생성new Date()new Date(milliseconds)new Date(dateString)new Date(year, month, day, hours, minutes, seconds, milliseconds)Date Get 메서드getDate() - 일 정보를 가져옴.getDay() - 요일 정보를 가져옴. 0(일요일)-6(토요일)getFullYear - 연도 정보를 가져옴. (yyyy)getHours() - 시간 정보를 가져옴.getMilliseconds() - 밀리초 정보를 가져옴. 0-999 (1/1000 초의 단위)getMinutes() - 분 정보를 가져옴.getMonth() - 월 정보를 가져옴. 현재 월에서 -1한 값으로 옴.getSeconds() - 초 정보를 가져옴.getTime() - 1970년 1월 1일부터 경과된 시간을 밀리초로 가져옴.Date Set 메서드setDate() - 일 정보를 설정.setFullYear() - 연도 정보를 설정. 원한다면 월과 일 정보도 설정할 수 있다.setHours() - 시간 정보를 설정.setMillseconds() - 밀리초 정보를 설정.setMinutes() - 분 정보를 설정.setSeconds() - 초 정보를 설정.setTime() - 1970년 1월 1일부터 경과된 시간을 밀리초로 설정.기타 Date 메서드now() - 1970년 1월 1일부터 지금까지의 밀리초를 반환.parse() - 날짜 형태의 문자열을 변환하여 1970년 1월 1일부터 입력한 날짜까지의 밀리초를 반환.toString() - Date 객체를 문자열로 변환.toJSON() - Date 객체를 JSON 데이터로 변환.valueOf() - Date 객체를 밀리초로 반환.숫자 객체 NumberNumber 생성var num = 1;      var num2 = new Number(1);Number 객체의 속성MAX_VALUE - 표현 가능한 가장 큰 수.MIN_VALUE - 표현 가능한 가장 작은 수.POSITIVE_INFINITY - 무한대 수 표기.NEGATIVE_INFINITY - 음의 무한대 수 표기.NaN - 숫자가 아닌 경우 표기.Number 객체 메서드toExponential(n) - 자수 표기법으로 소수점 n자리만큼 문자형 데이터로 반환.toFixed(n) - 소수점 n자리만큼 반올림하여 문자형 데이터로 반환.toPrecision(n) - 유효 숫자 n의 개수만큼 반올림하여 문자형 데이터로 반환.toString() - 숫자형 데이터를 문자형 데이터로 반환.valueOf() - 객체의 원래 값을 반환.parseInt(값) - 데이터를 정수로 변환하여 반환.parseFloat(값) - 데이터를 실수로 변환하여 반환.수학 객체 MathMath 메서드 및 상수Math.abs(숫자) - 숫자의 절댓값을 반환.Math.max(숫자1, 숫자2, 숫자3) - 숫자 중 최댓값을 반환.Math.min(숫자1, 숫자2, 숫자3) - 숫자 중 최솟값을 반환.Math.pow(숫자, 제곱값) - 숫자의 거듭제곱한 값을 반환.Math.random() - 0~1 사이의 난수를 반환.Math.round(숫자) - 소수점 첫째 자리에서 반올림하여 정수를 반환.Math.ceil(숫자) - 소수점 첫째 자리에서 무조건 올림에서 정수를 반환.Math.floor(숫자) - 소수점 첫째 자리에서 무조건 내림해서 정수를 반환.Math.sqrt(숫자) - 숫자의 제곱근 값을 반환.Math.PI - 원주율 상수를 반환.배열 객체 ArrayArray 생성var array = new Array();array[0] = 1;array[1] = 2;var array2 = new Array(1, "temp", true);var array3 = [1, true, "문자열도 가능"];Array 객체의 메서드 및 속성join(연결문자) - 배열 객체에 데이터를 연결 문자 기준으로 1개의 문자형 데이터로 반환.reverse() - 배열 객체에 데이터의 순서를 거꾸로 바꾼 후 반환.sort() - 배열 객체에 데이터를 오름차순으로 정렬.slice(index1, index2) - 배열 객체에 데이터 중 원하는 인덱스 구간만큼 잘라서 배열 객체로 가져옴.splice() - 배열 객체에 지정 데이터를 삭제하고 그 구간에 새 데이터를 삽입할 수 있음.concat() - 2개의 배열 객체를 하나로 결합.pop() - 배열에 저장된 데이터 중 마지막 인덱스에 저장된 데이터 삭제.push(new data) - 배열 객체에 마지막 인덱스에 새 데이터를 삽입.shift() - 배열 객체에 저장된 데이터 중 첫 번째 인덱스에 저장된 데이터를 삭제.unshift(new data) - 배열 객체의 가장 앞의 인덱스에 새 데이터를 삽입.length - 배열에 저장된 총 데이터의 개수를 반환.문자 객체 StringString 생성var str = "hello";      var str2 = new String("hi");String 객체 메서드 및 속성charAt(index) - 문자열에서 인덱스 번호에 해당하는 문자 반환.indexOf("찾을 문자") - 문자열에서 왼쪽부터 찾을 문자와 일치하는 문자를 찾아 최초로 일치하는 문자의 인덱스 번호를 반환. 찾는 문자가 없으면 -1 반환.lastIndexOf("찾을 문자") - indexOf와 동일하나 문자열의 오른쪽부터 찾음.match("찾을 문자") - indexOf와 동일하나 찾는 문자가 없으면 null을 반환.replace("바꿀 문자", "새 문자") - 문자열에서 왼쪽부터 바꿀 문자와 일치하는 문자를 찾아 최초로 찾은 문자를 새 문자로 치환.search("찾을 문자") - 문자열 왼쪽부터 찾을 문자와 일치하는 문자를 찾아 최초로 일치하는 인덱스 번호를 반환.slice(a, b) - a개의 문자를 자르고 b번째 이후에 문자를 자른 후 남은 문자를 반환.substring(a, b) - a 인덱스부터 b 인덱스 이전 구간의 문자를 반환.substr(a, 문자 개수) - 문자열에 a 인덱스부터 지정한 문자 개수만큼 문자열을 반환.split("문자") - 지정한 문자를 기준으로 문자 데이터를 나누어 배열에 저장하여 반환.toLowerCase() - 문자열에서 영문 대문자를 모두 소문자로 바꿈.toUpperCase() - 문자열에서 영문 소문자를 모두 대문자로 바꿈.length - 문자열에서 문자의 개수를 반환.concat("새로운 문자") - 문자열에 새로운 문자열을 결합.charCodeAt("찾을 문자") - 찾을 문자의 아스키 코드 값을 반환.fromCharCode(아스키 코드 값) - 아스키 코드 값에 해당하는 문자를 반환.trim() - 문자의 앞 또는 뒤에 공백 문자열을 삭제.브라우저 객체 모델(BOM)브라우저에 내장된 객체. window 객체브라우저 객체의 최상위 객체.window 객체 메서드open("url 경로", "창 이름", "옵션 설정") - 새 창을 열 때 사용.- open() 메서드 옵션 설정: width/height/left/top/location/status/scrollbars/tollbarsalert("메세지") - 경고 창을 띄움.prompt("질의 내용", "기본 답변") - 질의응답 창을 띄움.confirm("질의 내용") - 확인/취소 창을 띄움.- 확인 클릭시 true 반환, 취소 클릭시 false 반환.moveTo(x 위치값, y 위치값) - 창의 위치를 이동시킬 때 사용.resizeTo(너빗값, 높잇값) - 창의 크기를 변경시킬 때 사용.setInterval("스크립트 실행문", 시간 간격) - 일정 간격으로 반복하여 실행문을 실행시킬 때 사용.clearIntervar(참조 변수) - 참조 변수에 참조되어 있는 setInterval() 삭제.setTimeout("스크립트 실행문", 시간 간격) - 일정 간격으로 한 번만 실행문을 실행시킬 때 사용.clearTimeout(참조 변수) - 참조 변수에 참조되어 있던 setTimeout() 삭제.screen 객체사용자의 모니터 정보를 제공하는 객체.screen 객체 속성width/height/availWidth/availHeight/colorDepth(사용자 모니터가 표현 가능한 컬러 bit)location 객체사용자 브라우저의 주소 창에 url에 대한 정보와 새로 고침 기능을 제공하는 객체.location 객체 속성 및 메서드href - 주소 영역에 참조 주소를 설정하거나 URL 반환.hash - URL의 해시값을 반환.hostname - URL의 호스트 이름을 설정하거나 반환.host - URL의 호스트 이름과 포트 번호를 반환.port - URL의 포트 번호를 반환.protocol - URL의 프로토콜을 반환.search - URL의 쿼리를 반환.reload() - 새로 고침.history 객체사용자가 방문한 사이트 중 이전에 방문한 사이트와 다음 방문한 사이트로 다시 돌아갈 수 있는 속성과 메서드를 제공하는 객체.history 메서드 및 속성back() - 이전 방문한 페이지로 이동.forward() - 다음 방문한 페이지로 이동.go(이동 숫자) - 이동 숫자만큼의 페이지로 이동. 음의 값이면 이전 페이지로 이동.length - 방문 기록에 저장된 목록의 개수 반환.navigator 객체현재 방문자가 사용하는 브라우저 정보와 운영체제의 정보를 제공하는 객체.navigator 속성appCodeName - 방문자의 브라우저 코드명을 반환.appName - 방문자의 브라우저 이름 반환.appVersion - 방문자의 브라우저 버전 정보를 반환.language - 방문자의 브라우저 사용 언어를 반환.product - 방문자의 브라우저 사용 엔진 이름을 반환.platform - 방문자의 브라우저를 실행하는 운영체제를 반환.userAgent - 방문자의 브라우저와 운영체제의 종합 정보를 제공.문자 객체 모델(DOM)HTML 문서의 구조.선택자직접 선택자직접 문서에서 요소를 선택함. (id/class/폼 명/요소 명 등)document.getElementById("아이디 명") - 아이디를 이용해 요소를 선택.document.getElmentsByTagName("요소 명") - 요소의 이름을 이용해 요소를 선택.document.formName.inputName - 폼 요소에 name 속성을 이용해 요소를 선택.인접 관계 선택자직접 선택자를 사용해 선택해 온 문서 객체를 기준으로 가까이에 있는 요소를 선택함. (parentNode/childeNodes 등)parentNode - 선택한 요소의 부모 요소를 선택.childNodes - 선택한 요소의 모든 자식 요소를 선택. 선택한 모든 요소가 저장됨.firstChild - 선택한 요소의 첫 번째 자식 요소만 선택.previousSibling - 선택한 요소의 이전에 오는 형제 요소만 선택.nextSibling - 선택한 요소의 다음에 오는 형제 요소만 선택.문서 객체 이벤트 핸들러 적용하기onclick - 선택한 요소를 클릭했을 때 이벤트 발생.onmousevoer - 선택한 요소에 마우스를 올렸을 때 이벤트 발생.onmouseout - 선택한 요소에 마우스가 벗어났을 때 이벤트 발생.submit - 선택한 폼에 전송이 일어났을 떄 이벤트 발생.버튼document.getElementById("btn").onclick = function() {    alert("welcome");}일단은 참고하는 책을 기준으로하여 정리해보았는데 후에 시간이 될 때마다 공식 문서를 참고하여 번역한다는 생각으로 보다 세부적인 사항을 정리해도 좋을 것 같다는 생각이 드네요. 우선적으로는 빠르게 함수와 이벤트에 대해 배우고 객체에 대한 더 자세한 사항을 정리하도록 하겠습니다. 다음 포스팅은 자바스크립트의 함수와 이벤트에 대해 다룰 예정입니다!참고문헌:Do it! 자바스크립트+제이쿼리 입문 - 정인용JavaScript 튜토리얼 문서 (http://www.w3schools.com/js/default.asp)티스토리 블로그와 동시에 포스팅을 진행하고 있습니다.http://madeitwantit.tistory.com#트레바리 #개발자 #안드로이드 #앱개발 #Node.js #백엔드 #인사이트 #경험공유
조회수 754

프로그래밍 동료 평가의 어려움

지난 주에는 학생들이 서로 간의 과제를 채점해주는 방식의 과제 채점 방법인 동료 평가에 대해 알아보았습니다. 동료 평가는 강의에 크기에 거의 무관하게 사용될 수 있고, 학생들은 다른 학생들이 제출한 과제를 채점하면서 자기가 생각하지 못했던 새로운 아이디어를 발견하거나, 자신이 했던 것과 유사한 실수를 하는 친구에게는 자신의 경험을 바탕으로 건설적이고 유용한 피드백을 줄 수 있는 등의 장점도 있었습니다.엘리스 시스템에서 코드 공유 기능을 이용하면 동료 평가를 진행할 수 있습니다.그러나 동료 평가가 항상 만능인 것만은 아닙니다. 프로그래밍 수업에서 동료 평가는 크게 보면 “다른 사람의 프로그래밍 코드를 이해”하고, “이해한 것을 바탕으로 알맞은 평가”를 하는 두 단계로 이루어진다고 볼 수 있는데, 프로그래밍에 익숙하지 않은 대다수 학생에게는 “다른 사람의 코드를 이해”하는 첫 번째 단계부터가 큰 고난으로 다가오기 때문입니다. 이는 비단 학생의 문제일 뿐만이 아니라 실제 현장에서 일하고 있는 숙련된 프로그래머에게도 마찬가지입니다. 선행 연구에 따르면 다른 사람의 코드를 코드 그 자체만 보고 이해하는 것은 숙련된 프로그래머에게도 어려운 일이며, 그중에서도 특히나 해당 코드를 작성한 저자의 의도를 이해하는 것이 어렵다는 설문 결과가 있습니다. 몇 년이 넘는 시간 동안 수많은 코드를 읽어보았을 숙련자에게도 어려운 일인데, 프로그래밍에 전혀 경험이 없는 학생들에게는 얼마나 더 큰 어려움으로 다가올지 예상해보는 것은 어려운 일이 아닌 것 같습니다.그렇다면 프로그래밍 교육의 혁신을 추구하는 연구팀으로써 이를 두고만 볼 수는 없는 것은 당연지사. 동료 평가를 성공적으로 완수하기 위해 학생들에게 필요한 것은 무엇이고, 또 프로그래밍 교육 툴의 일부로서 제공해 줄 수 있는 것은 어떤 것들이 있을지 고민해보게 되었습니다. 그리고 본 연구팀은 다양한 대학교 전산 과목에서 조교로서 활동했던 경험과 프로그램 개발자로서 Git 등의 코드 버전 관리 도구, GitHub와 같은 오픈소스 커뮤니티에서 경험 등을 바탕으로 다음과 같은 접근을 해보았습니다.숙련된 오픈소스 개발자들도 리뷰를 위해 코드를 한 줄 한 줄 비교해가며 차근차근 읽어나가야 하는데, 왜 프로그래밍에 익숙하지 않은 학생들에게는 이 과정을 전부 생략한 채 마지막 결과(제출된 코드)만 보여주고 평가를 하게 하는 걸까? 오히려 숙련된 개발자들보다는 학생들에게 “한 줄” 단위 로, 아니면 이보다 더 세세하게 “한 글자” 단위로 코드가 처음부터 끝까지 완성되는 과정을 보여주는 것이 더 효과적이지 않을까?Eliph: Effective Visualization of Code History for Peer Assessment in Programming Education백문이 불여일견, 위의 이미지는 실험을 위해 제작된 프로그래밍 교육용 동료 평가 시스템 Eliph의 실제 사용 모습입니다. 프로그래밍에 익숙하지 않은 학생들이 동료 평가 과정에서 다른 학생의 코드를 이해하는 데에 어려움을 겪는 것은, 마지막으로 제출된 코드만 보아서는 문제 풀이 과정 전반에 대한 이해가 어렵기 때문이라는 것을 가설을 바탕으로, “그렇다면 문제 풀이 과정을 최대한 세세하게 보여주자!”는 아이디어를 구현한 것이 위의 보이는 Eliph 시스템입니다.Eliph는 학생이 프로그래밍 문제를 푸는 과정을 처음 시작부터 마지막으로 제출할 때까지의 키보드 입력, 코드 실행 결과, 중간 채점 결과 등을 모두 기록한 뒤, 나중에 다른 사람이 자신의 코드를 평가할 때 되돌려볼 수 있는 기능을 제공합니다. 그리고 이를 통해 (1) 평가를 받는 학생은 자신이 작성한 코드에 대한 의도를 평가자에게 더 잘 전달할 수 있고, (2) 평가를 하는 학생은 저자의 생각의 흐름을 함께 따라가며 코드를 더 쉽고 명확하게 이해할 수 있어 양쪽 모두가 동료 평가를 더 효과적으로 활용할 수 있습니다.본 연구팀은 Eliph 시스템을 효과를 검증하기 위해 실제 대학교 전산학과 수업에서 수강생 60명의 학생을 대상으로 시스템을 검증해보았습니다. 그 결과, 평가자가 Eliph 시스템을 사용해서 다른 사람의 코드를 평가할 때 코드 저자의 의도를 더 잘 파악할 수 있어 평가에 도움이 되었다는 것을 확인할 수 있었습니다(좌측 그래프). 또한, Eliph 시스템을 사용하여 진행된 동료 평가로부터 제출된 피드백이 기존의 방식으로 진행된 동료 평가로부터 제출된 피드백들보다 저자들에게 더 높은 만족도의 준다는 것을 확인할 수 있었습니다(우측 그래프). 좀 더 자세한 결과와 분석은 아래의 참고 문헌의 Eliph 논문에서 직접 확인해보실 수 있습니다.마치며이번 글에서는 프로그래밍 교육에서 동료 평가의 중요성과 실제로 수업에서 동료 평가를 사용하기 위해 넘어야 할 난관들을 소개해보았습니다. 그리고 프로그래밍에 익숙하지 않은 학생들이 동료 평가를 효과적으로 활용할 수 있도록 도와주는 시스템 Eliph를 간략하게 소개해드렸습니다. 아직 Eliph 시스템은 프로토타입으로만 개발되어 연구용으로만 사용되고 있지만, 조만간 엘리스 교육 플랫폼에서 사용해보실 수 있도록 열심히 준비하고 있으니, 기대해주시면 감사하겠습니다.참고 문헌Park, Jungkook, et al. “Eliph: Effective Visualization of Code History for Peer Assessment in Programming Education.” Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing. ACM, 2017.#엘리스 #코딩교육 #교육기업 #기업문화 #조직문화 #서비스소개
조회수 8866

왜 SQLite 에서 Realm 으로 옮겼는가?

SQLite 와 Realm잔디 앱은 2015년 중반부터 앱 내에 Offline Caching 기능이 포함되면서 본격적으로 Local-Databae 를 사용하기 시작했습니다.당시에 Realm 과 SQLite 를 검토하는 과정에서 다음과 같은 사유로 Realm 을 포기하였습니다.1.0 이 아직 되지 않은 미성숙된 상태의 라이브러리사용 사례에서 리포팅되는 버그들 (CPU 지원 등)Data 의 상속을 지원하지 않는 문제Robolectric 미지원 (안드로이드 팀 당시 테스트 프레임웍은 Robolectric 이었으며 현재 Android Test Support Library 입니다.)위의 문제로 인해 SQLite 를 선택하였고 여러 SQLite-ORM Library 를 검토한 후 ORMLite 를 선택하였습니다.누구보다 가볍고 빠르게2016년 6월경 앱의 핵심 데이터에 대해 개선작업이 되면서 그에 따라 기존의 Cache Data 로직도 많은 부분이 변경되었습니다. 그에 따라 실시간성으로 DB 를 대상으로 Read-Write 동작이 발생하게 되었습니다. Locking 등에 대한 처리가 되면서 성능에 대한 이슈가 계속적으로 발생할 수 밖에 없었습니다.간헐적인 성능 이슈는 사용자에게 나쁜 UX 로 다가갈 수 있기 때문에 다음과 같은 병목지점들에 대해 성능 향상을 꾀하였습니다.서버와의 통신 향상비지니스 로직 개선내부 DB 로직 향상서버와의 통신 향상병목 지점이 되는 것으로 판단되는 API 를 찾아 원인을 분석하여 개선요청을 서버팀에서 개선할 수 있도록 하였습니다.비지니스 로직 개선불필요한 객체 생성, 비동기로 처리해도 되는 동작들에 대해서는 로직 수정, 최소한의 검증 후에만 앱 실행, 네트워크 동작 최소화, 캐싱 활용 등 다양한 전략을 시도하였습니다.내부 DB 로직 향상SQLite 를 대상으로 빈번한 쿼리 작업을 최소한으로 하기 위해 2~3개의 쿼리로 이루어진 부분에 대해서 최소한의 쿼리만으로 동작하도록 여러 시도를 하였습니다.ORMLite 의 한계점ORMLite 를 대상으로 여러가지 시도를 하였습니다. 쿼리를 최소한으로 하고 1:N, N:M 동작에 대해서 로직 중간에 Query 가 발생하지 않도록 애초에 Join Query 를 하도록 하는 등 여러가지 전략을 시도하였으나 궁극적으로 ORMLite 자체에 대한 성능을 개선하는 것은 불가능하다는 결론이 도출하였습니다.여러 시도를 하였으나 고작 10~20% 정도의 성능향상밖에 없었으며 이는 사용자 관점에서 여전히 느릴 수 있다고 느끼기 충분한 수준이었습니다. 기존에 목표했던 100ms 이하의 쿼리를 기대하기엔 어려운 상황이었습니다.그래서 GreenDAO, Requery 라이브러리를 검토하였습니다.GreenDAO 의 문제점GreenDAO 를 검토하는 과정에서 겪은 가장 큰 문제점은 실제 Object 코드에 GreendDAO 코드가 생성이 붙으면서 유지보수에 큰 걸림돌이 될 수 있다는 것이 예상되었습니다.Requery 의 문제점성능면에서 ORMLite 에 비해서 큰 개선을 가져오지 못했습니다. Requery 는 JPA 를 가장 잘 채용한 것으로 알려져 있지만 그렇다고 SQLite 자체의 성능을 극적으로 개선했다고 보기엔 어려운 부분들이 있었습니다.SQLite vs RealmSQLite 가 가진 자체적인 성능 이슈를 SQLite 기반 라이브러리 범위안에서는 개선할 수 없다는 결론에 도달하였습니다.검토 방법 : 기존의 Object 를 대상으로 ORMLite 와 Realm 을 대상으로 성능을 검토합니다.데이터는 1:N / 1:1 관계가 되어 있는 여러 Object 의 집합으로 구성되어 있다.Database 에서 데이터를 가져올 때는 Eager Loading 방식으로 택한다.Write : 20회, Read : 20회 를 수행했고 그에 대한 평균 성능을 비교한다. SQLiteRealm성능 향상Write4039ms1142ms3.5xRead6010ms2450ms2.5x(Realm 의 벤치마크 정보와 너무 상이하여 재테스트한 결과 수정하였습니다.)위의 비교차트에서 봤듯이 Realm 은 무시무시한 성능이 입증되었습니다.도입 검토시에 Realm 버전은 2.0 이었기 때문에 충분히 신뢰할 수 있을 만큼 성숙되었다고 판단하고 최종적으로 도입을 결정하였습니다.Realm 도입 과정에서 문제점Realm 을 도입한다고 해서 여전히 잠재적인 문제가 해결된 것은 아니었습니다.파악된 다음 문제를 해결 해야 했습니다.Primitive 타입에 대해 Collection 저장을 지원하지 않는다.RealmObject 에 대한 호출 Thread 를 유지해야 한다.상속을 지원하지 않는다.Primitive 타입에 대한 Collection 관리를 해결하기이 문제는 ORMLite 에서 이미 겪었기 때문에 의외로 쉽게 구할 수 있었습니다. long, int 등에 대한 Wrapper 를 만들고 Json Convert 등의 과정에서 Post Processing 과정에서 Wrapper 로 데이터를 이관하도록 처리하였습니다.// example class Data extends RealmObject { private transient List refs; private List refIds; } class RealmLong extends RealmObject { private long value; } RealmObject 에 대한 호출 Thread 분리Realm 은 Object 에 대해 query 후 객체를 받는다 하더라도 실제로 객체 내 데이터르 접근할 때는 다시 Query 로 접근하기 때문에 실제로 Object 전체에 대해서 Eager Loading 방식으로 접근해야 합니다.Jandi 는 싱글톤 객체를 통해 데이터베이스에 접근하며, Background Thread 에서 진행하고 UI Thread 에서 객체 내 변수에 접근해서 UI 에 그리는 작업이 빈번하기 때문에 Thread 독립을 반드시 해야했습니다.Realm 에서는 Eager-Loading 을 지원하고 있습니다. Realm.copyFromObject() 를 사용하면 Return 값이 Eager-Loading 된 Object 가 반환됩니다.단, Realm 의 가장 큰 특징이로 보는 ZeroCopy 를 포기하는 것이기 때문에 신중하게 생각해야 합니다.// example public Chat getChat(long chatId) { return execute((realm) -> { Chat it = realm.where(Chat.class) .equalTo("id", chatId) .findFirst(); if (it != null) { return realm.copyFromRealm(it); } else { return null; } }); } 상속을 지원하지 않는다.가장 큰 문제였는데 해결방법을 찾을 수 없어 결국 상속을 포기하고 모든 Data 를 1개의 Object 에 표현하기로 하였습니다.위의 3가지 문제를 이렇게 해결해서 안드로이드팀에서는 1차적으로 도입을 완료하였습니다.결론현재까지 Realm 전환에 있어서 성공적인 도입으로 판단되어 차후에 다른 데이터에 대해서도 하나씩 DB 이전을 할 예정입니다.Realm 은 이제 충분히 신뢰할 수 있을만큼 성숙되었다고 생각이며 Realm 에서 처음부터 강조하던 성능또한 믿기 어려울 정도로 빨라졌습니다. 더 빠른 Mobile Database 를 원하신다면 Realm 을 적극 추천합니다.#토스랩 #잔디 #JANDI #개발 #개발환경 #업무환경
조회수 1069

안드로이드 개발자의 고민 Fragment (2)

이전 글 보기: 안드로이드 개발자의 고민: Fragment이번 글에서는 Fragment stack 관리와 Fragment 데이터 Lifecycle 관리 이슈를 줄일 수 있는 해결 방법을 찾아보겠습니다. 이전 글에서는  Fragment를 하나의 View로 관리하는 오픈소스를 검토했었습니다.하지만 검토하는 중에 기존 오픈 소스의 변경과 버전업 관리 이슈의 문제를 그냥 넘어갈 수는 없었습니다. 상용 소스에 바로 적용하기에는 리스크가 크다고 판단해 좀 더 신뢰할 수 있는 방법을 선택하기로 했는데요.요즘은 작년 6월에 Google IO 에 발표한 AndroidX의 내용을 다시 검토하고 있습니다. Deeplink를 통한 목적 화면과 Fragment 스택 관리가 중요한데, 이 기능을 도와주는 것이 AndroidX Navigation이기 때문입니다. 화면 전환을 UI 기반으로 사용하여 화면 관리를 용이하게 만들었습니다. 물론 코드 기반에 익숙한 저는 적용하는데 시간이 걸렸죠.기존의 Fragment 관리는 FragmentManager를 통하여 개발자가 직접 코드 상에서 관리했습니다. 하지만 Navigation의 경우에는 아래와 같이 직관적으로 설정할 수 있습니다.firstFragment -> secondFragment -> thirdFragment 로 화면 간의 흐름을 설정합니다. 하나의 Navigation 파일은 하나 이상의 Activity 에서 사용할 수 있습니다.이 방식은 오히려 현재 사용하는 브랜디 소스와 비슷합니다. 하나의 Activity에 ActivityFragment를 만들어서 1:1 매핑으로 화면을 Fragment를 관리하는 방식과 유사합니다. Navigation 의 세부내용은 Google Developers에서 확인할 수 있습니다.Deeplink 를 통한 Fragment Stack 관리도 간단합니다.Notification 또는 Serice 등에서 PendingIntent를 사용하여 테스트할 수 있습니다. Navigation Fragment stack 순서대로 화면을 쌓은 다음 최종 destination Fragment 로 도착합니다. 이와 같은 방법으로 Push를 통한 화면 관리를 쉽게 할 수 있습니다. 이 내용은 여기에서 자세히 확인할 수 있습니다.신속한 마무리기존 Android 에서 화면 관리가 불편했다면 Navigation으로 직관적이고 쉽게 화면을 관리할 수 있을 겁니다. 브랜디는 아직 적용할 준비 중이지만, 꼭 kotlin과 Navigation을 적용해보려 합니다. 그럼 다시 개발의 숲으로 들어가보겠습니다.글고재성 과장 | R&D 개발1팀gojs@brandi.co.kr브랜디, 오직 예쁜 옷만
조회수 1418

VCNC가 Hadoop대신 Spark를 선택한 이유

요즘은 데이터 분석이 스타트업, 대기업 가릴 것 없이 유행입니다. VCNC도 비트윈 출시 때부터 지금까지 데이터 분석을 해오고 있고, 데이터 기반의 의사결정을 내리고 있습니다.데이터 분석을 하는데 처음부터 복잡한 기술이 필요한 것은 아닙니다. Flurry, Google Analytics 등의 훌륭한 무료 툴들이 있습니다. 하지만 이러한 범용 툴에서 제공하는 것 이상의 특수하고 자세한 분석을 하고 싶을 때 직접 많은 데이터를 다루는 빅데이터 분석을 하게 됩니다. VCNC에서도 비트윈의 복잡한 회원 가입 프로세스나, 채팅, 모멘츠 등 다양한 기능에 대해 심층적인 분석을 위해 직접 데이터를 분석하고 있습니다.빅데이터 분석 기술큰 데이터를 다룰 때 가장 많이 쓰는 기술은 Hadoop MapReduce와 연관 기술인 Hive입니다. 구글의 논문으로부터 영감을 받아 이를 구현한 오픈소스 프로젝트인 Hadoop은 클러스터 컴퓨팅 프레임웍으로 비싼 슈퍼컴퓨터를 사지 않아도, 컴퓨터를 여러 대 연결하면 대수에 따라서 데이터 처리 성능이 스케일되는 기술입니다. 세상에 나온지 10년이 넘었지만 아직도 잘 쓰이고 있으며 데이터가 많아지고 컴퓨터가 저렴해지면서 점점 더 많이 쓰이고 있습니다. VCNC도 작년까지는 데이터 분석을 하는데 MapReduce를 많이 사용했습니다.주스를 만드는 과정에 빗대어 MapReduce를 설명한 그림. 함수형 프로그래밍의 기본 개념인 Map, Reduce라는 프레임을 활용하여 여러 가지 문제를 병렬적으로 처리할 수 있다. MapReduce slideshare 참조MapReduce는 슈퍼컴퓨터 없이도 저렴한 서버를 여러 대 연결하여 빅데이터 분석을 가능하게 해 준 혁신적인 기술이지만 10년이 지나니 여러 가지 단점들이 보이게 되었습니다. 우선 과도하게 복잡한 코드를 짜야합니다. 아래는 간단한 Word Count 예제를 MapReduce로 구현한 것인데 매우 어렵고 복잡합니다.MapReduce로 단어 갯수를 카운트하는 간단한 예제 (Java). 많은 코드를 작성해야 한다.이의 대안으로 SQL을 MapReduce로 변환해주는 Hive 프로젝트가 있어 많은 사람이 잘 사용하고 있지만, 쿼리를 최적화하기가 어렵고 속도가 더 느려지는 경우가 많다는 어려움이 있습니다.MapReduce의 대안으로 최근 아주 뜨거운 기술이 있는데 바로 Apache Spark입니다. Spark는 Hadoop MapReduce와 비슷한 목적을 해결하기 위한 클러스터 컴퓨팅 프레임웍으로, 메모리를 활용한 아주 빠른 데이터 처리가 특징입니다. 또한, 함수형 프로그래밍이 가능한 언어인 Scala를 사용하여 코드가 매우 간단하며, interactive shell을 사용할 수 있습니다.Spark으로 단어 개수를 카운트하는 간단한 예제 (Scala). MapReduce에 비해 훨씬 간단하다.Spark과 MapReduce의 성능 비교. I/O intensive 한 작업은 성능이 극적으로 향상되며, CPU intensive 한 작업의 경우에도 효율이 더 높다. (자료: RDD 논문)Apache Spark는 미국이나 중국에서는 현재 Hadoop을 대체할만한 기술로 급부상하고 있으며, 국내에도 최신 기술에 발 빠른 사람들은 이미 사용하고 있거나, 관심을 갖고 있습니다. 성능이 좋고 사용하기 쉬울 뿐 아니라, 범용으로 사용할 수 있는 프레임웍이기에 앞으로 더 여러 분야에서 많이 사용하게 될 것입니다. 아직 Spark를 접해보지 못하신 분들은 한번 시간을 내어 살펴보시길 추천합니다.기존의 데이터 분석 시스템 아키텍처기존의 데이터 분석 시스템 아키텍처기존의 시스템은 비용을 줄이기 위해 머신들을 사무실 구석에 놓고 직접 관리했으며, AWS S3 Tokyo Region에 있는 로그를 다운받아 따로 저장한 뒤, MapReduce로 계산을 하고 dashboard를 위한 사이트를 따로 제작하여 운영하고 있었습니다.이러한 시스템은 빅데이터 분석을 할 수 있다는 것 외에는 불편한 점이 많았습니다. 자주 고장 나는 하드웨어를 수리하느라 바빴고, 충분히 많은 머신을 확보할 여유가 없었기 때문에 분석 시간도 아주 오래 걸렸습니다. 그리고 분석부터 시각화까지 과정이 복잡하였기 때문에 간단한 것이라도 구현하려면 시간과 노력이 많이 들었습니다.Spark과 Zeppelin을 만나다이때 저희의 관심을 끈 것이 바로 Apache Spark입니다. MapReduce에 비해 성능과 인터페이스가 월등히 좋은 데다가 0.x 버전과는 달리 1.0 버전에서 많은 문제가 해결되면서 안정적으로 운영할 수 있어 비트윈 데이터 분석팀에서는 Spark 도입을 결정했습니다.Apache Zeppelin은 국내에서 주도하고 있는 오픈소스 프로젝트로써, Spark를 훨씬 더 편하고 강력하게 사용할 수 있게 해주는 도구입니다. 주요한 역할은 노트북 툴, 즉 shell에서 사용할 코드를 기록하고 재실행할 수 있도록 관리해주는 역할과 코드나 쿼리의 실행 결과를 차트나 표 등으로 시각화해서 보여주는 역할입니다. VCNC에서는 Zeppelin의 초기 버전부터 관심을 가지고 살펴보다가, Apache Spark를 엔진으로 사용하도록 바뀐 이후에 활용성이 대폭 좋아졌다고 판단하여 데이터 분석에 Zeppelin을 도입하여 사용하고 있고, 개발에도 참여하고 있습니다.또한, 위에서 언급한 하드웨어 관리에 드는 노력을 줄이기 위해서 전적으로 클라우드를 사용하기로 함에 따라서1 아래와 같은 새로운 구조를 가지게 되었습니다.새로운 데이터 분석 시스템 아키텍처새로운 데이터 분석 시스템 아키텍처새로운 데이터 분석 시스템은 아키텍처라고 하기에 다소 부끄러울 정도로 간단합니다. 애초에 전체 시스템 구성을 간단하게 만드는 것에 중점을 두었기 때문입니다. 대략적인 구성과 활용법은 아래와 같습니다.모든 서버는 AWS 클라우드를 이용수 대의 Zeppelin 서버, 수 대의 Spark 서버운영Spark 서버는 메모리가 중요하므로 EC2 R3 instance 사용로그는 별도로 저장하지 않고 서비스 서버에서 S3로 업로드하는 로그를 곧바로 가져와서 분석함중간 결과 저장도 별도의 데이터베이스를 두지 않고 S3에 파일로 저장Zeppelin의 scheduler 기능을 이용하여 daily batch 작업 수행별도의 dashboard용 Zeppelin을 통해 중간 결과를 시각화하며 팀에 결과 공유이렇게 간단한 구조이긴 하지만 Apache Spark와 Apache Zeppelin을 활용한 이 시스템의 능력은 기존 시스템보다 더 강력하고, 더 다양한 일을 더 빠르게 해낼 수 있습니다.기존현재일일 배치 분석코드 작성 및 관리가 어려움Zeppelin의 Schedule 기능을 통해 수행 Interactive shell로 쉽게 데이터를 탐험 오류가 생긴 경우에 shell을 통해 손쉽게 원인 발견 및 수정 가능Ad-hoc(즉석) 분석복잡하고 많은 코드를 짜야 함분석 작업에 수 일 소요Interactive shell 환경에서 즉시 분석 수행 가능Dashboard별도의 사이트를 제작하여 운영 관리가 어렵고 오류 대응 힘듦Zeppelin report mode 사용해서 제작 코드가 바로 시각화되므로 제작 및 관리 수월성능일일 배치 분석에 약 8시간 소요메모리를 활용하여 동일 작업에 약 1시간 소요이렇게 시스템을 재구성하는 작업이 간단치는 않았습니다. 이전 시스템을 계속 부분적으로 운영하면서 점진적으로 재구성 작업을 하였는데 대부분 시스템을 옮기는데 약 1개월 정도가 걸렸습니다. 그리고 기존 시스템을 완전히 대체하는 작업은 약 6개월 후에 종료되었는데, 이는 분석 성능이 크게 중요하지 않은 부분들에 대해서는 시간을 두고 여유 있게 작업했기 때문이었습니다.Spark와 Spark SQL을 활용하여 원하는 데이터를 즉석에서 뽑아내고 공유하는 예제Zeppelin을 활용하여 인기 스티커를 조회하는 dashboard 만드는 예제결론비트윈 데이터 분석팀은 수개월에 걸쳐 데이터 분석 시스템을 전부 재구성하였습니다. 중점을 둔 부분은빠르고 효율적이며 범용성이 있는 Apache Spark, Apache Zeppelin을 활용하는 것최대한 시스템을 간단하게 구성하여 관리 포인트를 줄이는 것두 가지였고, 그 결과는 매우 성공적이었습니다.우선 데이터 분석가 입장에서도 관리해야 할 포인트가 적어져 부담이 덜하고, 이에 따라 Ad-hoc분석을 수행할 수 있는 시간도 늘어나 여러 가지 데이터 분석 결과를 필요로 하는 다른 팀들의 만족도가 높아졌습니다. 새로운 기술을 사용해 본 경험을 글로 써서 공유하고, 오픈소스 커뮤니티에 기여할 수 있는 시간과 기회도 생겼기 때문에 개발자로서 보람을 느끼고 있습니다.물론 새롭게 구성한 시스템이 장점만 있는 것은 아닙니다. 새로운 기술들로 시스템을 구성하다 보니 세세한 기능들이 아쉬울 때도 있고, 안정성도 더 좋아져야 한다고 느낍니다. 대부분 오픈소스 프로젝트이므로, 이러한 부분은 적극적으로 기여하여 개선하여 나갈 계획입니다.비트윈 팀에서는 더 좋은 개발환경, 분석환경을 위해 노력하고 있으며 이는 더 좋은 서비스를 만들기 위한 중요한 기반이 된다고 생각합니다. 저희는 항상 좋은 개발자를 모시고 있다는 광고와 함께 글을 마칩니다.연관 자료: AWS 한국 유저 그룹 - Spark + S3 + R3 을 이용한 데이터 분석 시스템 만들기↩저희는 언제나 타다 및 비트윈 서비스를 함께 만들며 기술적인 문제를 함께 풀어나갈 능력있는 개발자를 모시고 있습니다. 언제든 부담없이 jobs@vcnc.co.kr로 이메일을 주시기 바랍니다!
조회수 953

비트윈의 HBase 스키마 해부

비트윈에서는 HBase를 메인 데이터베이스로 이용하고 있습니다. 유저 및 커플에 대한 정보와 커플들이 주고받은 메시지, 업로드한 사진 정보, 메모, 기념일, 캘린더 등 서비스에서 만들어지는 다양한 데이터를 HBase에 저장합니다. HBase는 일반적인 NoSQL과 마찬가지로 스키마를 미리 정의하지 않습니다. 대신 주어진 API를 이용해 데이터를 넣기만 하면 그대로 저장되는 성질을 가지고 있습니다. 이런 점은 데이터의 구조가 바뀔 때 별다른 스키마 변경이 필요 없다는 등의 장점으로 설명되곤 하지만, 개발을 쉽게 하기 위해서는 데이터를 저장하는데 어느 정도의 규칙이 필요합니다. 이 글에서는 비트윈이 데이터를 어떤 구조로 HBase에 저장하고 있는지에 대해서 이야기해 보고자 합니다.비트윈에서 HBase에 데이터를 저장하는 방법¶Thrift를 이용해 데이터 저장: Apache Thrift는 자체적으로 정의된 문법을 통해 데이터 구조를 정의하고 이를 직렬화/역직렬화 시킬 수 있는 기능을 제공합니다. 비트윈에서는 서버와 클라이언트가 통신하기 위해 Thrift를 이용할 뿐만 아니라 HBase에 저장할 데이터를 정의하고 데이터 저장 시 직렬화를 위해 Thrift를 이용합니다.하나의 Row에 여러 Column을 트리 형태로 저장: HBase는 Column-Oriented NoSQL로 분류되며 하나의 Row에 많은 수의 Column을 저장할 수 있습니다. 비트윈에서는 Column Qualifier를 잘 정의하여 한 Row에 여러 Column을 논리적으로 트리 형태로 저장하고 있습니다.추상화된 라이브러리를 통해 데이터에 접근: 비트윈에서는 HBase 클라이언트 라이브러리를 직접 사용하는 것이 아니라 이를 래핑한 Datastore라는 라이브러리를 구현하여 이를 이용해 HBase의 데이터에 접근합니다. GAE의 Datastore와 인터페이스가 유사하며 실제 저장된 데이터들을 부모-자식 관계로 접근할 수 있게 해줍니다.트랜잭션을 걸고 데이터에 접근: HBase는 일반적인 NoSQL과 마찬가지로 트랜잭션을 제공하지 않지만 비트윈에서는 자체적으로 제작한 트랜잭션 라이브러리인 Haeinsa를 이용하여 Multi-Row ACID 트랜잭션을 걸고 있습니다. Haeinsa 덕분에 성능 하락 없이도 데이터 무결성을 유지하고 있습니다.Secondary Index를 직접 구현: HBase에서는 데이터를 Row Key와 Column Qualifier를 사전식 순서(lexicographical order)로 정렬하여 저장하며 정렬 순서대로 Scan을 하거나 바로 임의 접근할 수 있습니다. 하지만 비트윈의 어떤 데이터들은 하나의 Key로 정렬되는 것으로는 충분하지 않고 Secondary Index가 필요한 경우가 있는데, HBase는 이런 기능을 제공하지 않고 있습니다. 비트윈에서는 Datastore 라이브러리에 구현한 Trigger을 이용하여 매우 간단한 형태의 Secondary Index를 만들었습니다.비트윈 HBase 데이터 구조 해부¶페이스북의 메시징 시스템에 관해 소개된 글이나, GAE의 Datastore에 저장되는 구조를 설명한 글을 통해 HBase에 어떤 구조로 데이터를 저장할지 아이디어를 얻을 수 있습니다. 비트윈에서는 이 글과는 약간 다른 방법으로 HBase에 데이터를 저장합니다. 이에 대해 자세히 알아보겠습니다.전반적인 구조¶비트윈에서는 데이터를 종류별로 테이블에 나누어 저장하고 있습니다. 커플과 관련된 정보는 커플 테이블에, 유저에 대한 정보는 유저 테이블에 나누어 저장합니다.각 객체와 관련된 정보는 각각의 HBase 테이블에 저장됩니다.또한, 관련된 데이터를 하나의 Row에 모아 저장합니다. 특정 커플과 관련된 사진, 메모, 사진과 메모에 달린 댓글, 기념일 등의 데이터는 해당 커플과 관련된 하나의 Row에 저장됩니다. Haeinsa를 위한 Lock Column Family를 제외하면, 데이터를 저장하기 위한 용도로는 단 하나의 Column Family만 만들어 사용하고 있습니다.각 객체의 정보와 자식 객체들은 같은 Row에 저장됩니다.또한, 데이터는 기본적으로 하나의 Column Family에 저장됩니다.이렇게 한 테이블에 같은 종류의 데이터를 모아 저장하게 되면 Region Split하는 것이 쉬워집니다. HBase는 특정 테이블을 연속된 Row들의 집합인 Region으로 나누고 이 Region들을 여러 Region 서버에 할당하는 방식으로 부하를 분산합니다. 테이블을 Region으로 나눌 때 각 Region이 받는 부하를 고려해야 하므로 각 Row가 받는 부하가 전체적으로 공평해야 Region Split 정책을 세우기가 쉽습니다. 비트윈의 경우 커플과 관련된 데이터인 사진이나 메모를 올리는 것보다는 유저와 관련된 데이터인 메시지를 추가하는 트래픽이 훨씬 많은데, 한 테이블에 커플 Row와 유저 Row가 섞여 있다면 각 Row가 받는 부하가 천차만별이 되어 Region Split 정책을 세우기가 복잡해집니다. RegionSplitPolicy를 구현하여 Region Split 정책을 잘 정의한다면 가능은 하지만 좀 더 쉬운 방법을 택했습니다.또한, 한 Row에 관련된 정보를 모아서 저장하면 성능상 이점이 있습니다. 기본적으로 한 커플에 대한 데이터들은 하나의 클라이언트 요청을 처리하는 동안 함께 접근되는 경우가 많습니다. HBase는 같은 Row에 대한 연산을 묶어 한 번에 실행시킬 수 있으므로 이 점을 잘 이용하면 성능상 이득을 얻을 수 있습니다. 비트윈의 데이터 구조처럼 특정 Row에 수많은 Column이 저장되고 같은 Row의 Column들에 함께 접근하는 경우가 많도록 설계되어 있다면 성능 향상을 기대할 수 있습니다. 특히 Haeinsa는 한 트랜잭션에 같은 Row에 대한 연산은 커밋시 한 번의 RPC로 묶어 처리하므로 RPC에 드는 비용을 최소화합니다. 실제 비트윈에서 가장 많이 일어나는 연산인 메시지 추가 연산은 그냥 HBase API를 이용하여 구현하는 것보다 Haeinsa Transaction API를 이용해 구현하는 것이 오히려 성능이 좋습니다.Column Qualifier의 구조¶비트윈은 커플들이 올린 사진 정보들을 저장하며, 또 사진들에 달리는 댓글 정보들도 저장합니다. 한 커플을 Root라고 생각하고 커플 밑에 달린 사진들을 커플의 자식 데이터, 또 사진 밑에 달린 댓글들을 사진의 자식 데이터라고 생각한다면, 비트윈의 데이터들을 논리적으로 트리 형태로 생각할 수 있습니다. 비트윈 개발팀은 Column Qualifier를 잘 정의하여 실제로 HBase에 저장할 때에도 데이터가 트리 형태로 저장되도록 설계하였습니다. 이렇게 트리 형태로 저장하기 위한 Key구조에 대해 자세히 알아보겠습니다.Column Qualifier를 설계할 때 성능을 위해 몇 가지 사항들을 고려해야 합니다. HBase에서는 한 Row에 여러 Column이 들어갈 수 있으며 Column들은 Column Qualifier로 정렬되어 저장됩니다. ColumnRangeFilter를 이용하면 Column에 대해 정렬 순서로 Scan연산이 가능합니다. 이 때 원하는 데이터를 순서대로 읽어야 하는 경우가 있는데 이를 위해 Scan시, 최대한 Sequential Read를 할 수 있도록 설계해야 합니다. 또한, HBase에서 데이터를 읽어올 때, 실제로 데이터를 읽어오는 단위인 Block에 대해 캐시를 하는데 이를 Block Cache라고 합니다. 실제로 같이 접근하는 경우가 빈번한 데이터들이 최대한 근접한 곳에 저장되도록 설계해야 Block Cache의 도움을 받을 수 있습니다.비트윈에서는 특정 커플의 사진이나 이벤트를 가져오는 등의 특정 타입으로 자식 데이터를 Scan해야하는 경우가 많습니다. 따라서 특정 타입의 데이터를 연속하게 저장하여 최대한 Sequential Read가 일어나도록 해야 합니다. 이 때문에 Column Qualifier가 가리키는 데이터의 타입을 맨 앞에 배치하여 같은 타입의 자식 데이터들끼리 연속하여 저장되도록 하였습니다. 만약 가리키는 데이터의 타입과 아이디가 Parent 정보 이후에 붙게 되면 사진 사이사이에 각 사진의 댓글 데이터가 끼어 저장됩니다. 이렇게 되면 사진들에 대한 데이터를 Scan시, 중간중간 저장된 댓글 데이터들 때문에 완벽한 Sequential Read가 일어나지 않게 되어 비효율적입니다.이렇게 특정 타입의 자식들을 연속하게 모아 저장하는 묶음을 컬렉션이라고 합니다. 컬렉션에는 컬렉션에 저장된 자식들의 개수나 새로운 자식을 추가할 때 발급할 아이디 등을 저장하는 Metadata가 있습니다. 이 Metadata도 특정 Column에 저장되므로 Metadata를 위한 Column Qualifier가 존재합니다. 이를 위해 Column Qualifier에는 Column Qualifier가 자칭하는 데이터가 Metadata인지 표현하는 필드가 있는데, 특이하게도 메타데이터임을 나타내는 값이 1이 아니라 0입니다. 이는 Metadata가 컬렉션의 맨 앞쪽에 위치하도록 하기 위함입니다. 컬렉션을 읽을 때 보통 맨 앞에서부터 읽는 경우가 많고, 동시에 Metadata에도 접근하는 경우가 많은데, 이 데이터가 인접하게 저장되어 있도록 하여 Block Cache 적중이 최대한 일어나도록 한 것입니다.Datastore 인터페이스¶비트윈에서는 이와 같은 데이터 구조에 접근하기 위해 Datastore라는 라이브러리를 구현하여 이를 이용하고 있습니다. HBase API를 그대로 이용하는 것보다 좀 더 쉽게 데이터에 접근할 수 있습니다. GAE의 Datastore와 같은 이름인데, 실제 인터페이스도 매우 유사합니다. 이 라이브러리의 인터페이스에 대해 간단히 알아보겠습니다.Key는 Datastore에서 HBase에 저장된 특정 데이터를 지칭하기 위한 클래스입니다. 논리적으로 트리 형태로 저장된 데이터 구조를 위해 부모 자식 관계를 이용하여 만들어 집니다.Key parentKey = new Key(MType.T_RELATIONSHIP, relId);Key photoKey = new Key(parentKey, MType.T_PHOTO, photoId); // 특정 커플 밑에 달린 사진에 대한 키Datastore는 Key를 이용해 Row Key와 Column Qualifier를 만들어 낼 수 있습니다. Datastore는 이 정보를 바탕으로 HBase에 새로운 데이터를 저장하거나 저장된 데이터에 접근할 수 있는 메서드를 제공합니다. 아래 코드에서 MUser 클래스는 Thrift로 정의하여 자동 생성된 클래스이며, Datastore에서는 이 객체를 직렬화 하여 HBase에 저장합니다.MUser user = new MUser();user.setNickname("Alice");user.setGender(Gender.FEMALE);user.setStatus("Hello World!"); Key userKey = new Key(MType.T_USER, userId);getDatastore().put(userKey, user);user = getDatastore().get(userKey);getDatastore().delete(userKey);또한, Datastore는 Key를 범위로 하여 Scan연산이 할 수 있도록 인터페이스를 제공합니다. Java에서 제공하는 Try-with-resource문을 이용하여 ResultScanner를 반드시 닫을 수 있도록 하고 있습니다. 내부적으로 일단 특정 크기만큼 배치로 가져오고 더 필요한 경우 더 가져오는 식으로 구현되어 있습니다.try (CloseableIterable> entries = getDatastore().subSibling(fromKey, fromInclusive, toKey, toInclusive)) { for (KeyValue entry : entries) { // do something }}Secondary Index 구현 방법¶HBase는 데이터를 Row Key나 Column Qualifier로 정렬하여 저장합니다. 이 순서로만 Sequential Read를 할 수 있으며 Key값을 통해 특정 데이터를 바로 임의 접근할 수 있습니다. 비트윈에서는 특정 달에 해당하는 이벤트들을 읽어오거나 특정 날짜의 사진들의 리스트를 조회하는 등 id 순서가 아니라 특정 값을 가지는 데이터를 순서대로 접근해야 하는 경우가 있습니다. 이럴 때에도 효율적으로 데이터에 접근하기 위해서는 id로 정렬된 것 외에 특정 값으로 데이터를 정렬할 수 있어야 합니다. 하지만 HBase에서는 이와 같은 Secondary Index 같은 기능을 제공하지 않습니다. 비트윈 개발팀은 이에 굴하지 않고 Secondary Index를 간단한 방법으로 구현하여 사용하고 있습니다.구현을 간단히 하기 위해 Secondary Index를 다른 데이터들과 마찬가지로 특정 타입의 데이터로 취급하여 구현하였습니다. 따라서 Index에 대해서도 Column Qualifier가 발급되며, 이때, Index에 해당하는 id를 잘 정의하여 원하는 순서의 Index를 만듭니다. 이런 식으로 원하는 순서로 데이터를 정렬하여 저장할 수 있으며 이 인덱스를 통해 특정 필드의 값의 순서대로 데이터를 조회하거나 특정 값을 가지는 데이터에 바로 임의 접근할 수 있습니다. 또한, Index에 실제 데이터를 그대로 복사하여 저장하여 Clustered Index처럼 동작하도록 하거나, Reference만 저장하여 Non-Clustered Index와 같이 동작하게 할 수도 있습니다. Datastore 라이브러리에는 특정 데이터가 추가, 삭제, 수정할 때 특정 코드를 실행할 수 있도록 Trigger 기능이 구현되어 있는데, 이를 통해 Index를 업데이트합니다. 데이터의 변경하는 연산과 Index를 업데이트하는 연산이 하나의 Haeinsa 트랜잭션을 통해 원자적으로 일어나므로 데이터의 무결성이 보장됩니다.못다 한 이야기¶각 테이블의 특정 Row의 Column들에 대한 Column Qualifier외에도 Row에 대한 Row Key를 정의 해야 합니다. 비트윈에서는 각 Row가 표현하는 Root객체에 대한 아이디를 그대로 Row Key로 이용합니다. 새로운 Root객체가 추가될 때 발급되는 아이디는 랜덤하게 생성하여 객체가 여러 Region 서버에 잘 분산될 수 있도록 하였습니다. 만약 Row Key를 연속하게 발급한다면 특정 Region 서버로 연산이 몰리게 되어 성능 확장에 어려움이 생길 수 있습니다.데이터를 저장할 때 Thrift를 이용하고 있는데, Thrift 때문에 생기는 문제가 있습니다. 비트윈에서 서버를 업데이트할 때 서비스 중지 시간을 최소화하기 위해 롤링 업데이트를 합니다. Thrift 객체에 새로운 필드가 생기는 경우, 롤링 업데이트 중간에는 일부 서버에만 새로운 Thift가 적용되어 있을 수 있습니다. 업데이트된 서버가 새로운 필드에 값을 넣어 저장했는데, 아직 업데이트가 안 된 서버가 이 데이터를 읽은 후 데이터를 다시 저장한다면 새로운 필드에 저장된 값이 사라지게 됩니다. Google Protocol Buffer의 경우, 다시 직렬화 할 때 정의되지 않은 필드도 처리해주기 때문에 문제가 없지만, Thrift의 경우에는 그렇지 않습니다. 비트윈에서는 새로운 Thrift를 적용한 과거 버전의 서버를 먼저 배포한 후, 업데이트된 서버를 다시 롤링 업데이트를 하는 식으로 이 문제를 해결하고 있습니다.저희는 언제나 타다 및 비트윈 서비스를 함께 만들며 기술적인 문제를 함께 풀어나갈 능력있는 개발자를 모시고 있습니다. 언제든 부담없이 jobs@vcnc.co.kr로 이메일을 주시기 바랍니다!
조회수 1058

OLTP에 대하여

Overview우리는 대부분의 활동을 스마트폰 하나로 해결할 수 있습니다. 은행에 가지 않아도 앱만 있으면 은행 업무를 할 수 있고, 몇 번의 터치만으로 다양한 물건을 구매할 수 있습니다. 모든 것을 온라인에서 해결합니다. 이 말을 바꿔 말하면, ‘온라인에 연결되지 않았다는 건 대부분의 경제활동에서 벗어났다’는 의미이기도 합니다. 우리가 온라인에서 무언가를 클릭(또는 터치)한다는 건 서버에 호출하는 행위이기도 합니다. 서버가 실시간으로 원하는 결과를 우리에게 다시 보내주는 것이죠. 이렇듯 많은 사람들에게 실시간으로 서버가 자료를 처리하는 과정을 OLPT(Online transaction processing)라고 합니다. Table의 구조OLTP 처리를 하려면 DB를 어떻게 설계해야 할까요. 예를 들어봅시다. 모든 웹사이트는 서비스를 이용하려면 우선 회원가입을 해야 합니다. 가입을 할 때는 ID 와 비밀번호를 꼭 만들어야 하고요. 이것을 DB Table로 가정하면 회원 Table은 ID와 암호 컬럼으로 구성될 겁니다. 회원ID암호위의 Table은 가입자 수가 많아지면 운영을 하고 건수가 많아지면 두 가지 문제가 발생합니다. 첫 번째는 ID가 중복된다는 것, 그리고 두 번째는 자료가 많아질수록 가입된 회원의 ID를 가져오는 게 느려진다는 것이죠. 전자의 문제는 Application 단에서 어느 정도 확인할 수는 있지만 다중 사용자 구조에서 중복되지 않는다는 보장을 할 수 없습니다. 후자의 문제는 Table만으로는 해결되지 않습니다. 이를 해결하려면 Index(Primary Key)를 생성해 해결할 수 있습니다. Index 생성으로 문제를 해결할 수 있다는 게 생소할지도 모릅니다. 우선 Index의 기본적인 구조를 알아야 합니다. 보통 Table에 자료를 Insert하면 입력한 순서대로 자료가 쌓입니다. 회원입력순서ID암호1홍길동12342강감찬56783이순신abcd4김좌진efgh하지만 Oracle Cluster Table과 MySQL InnoDB Table은 Table에는 입력한 순서대로 쌓이지 않고, 특정 KEY에 따라 쌓입니다. 그러므로 모든 테이블이 꼭 위의 예시처럼 순서대로 쌓이진 않습니다. Oracle Cluster Table과 MySQL InnoDB Table은 아래 예시처럼 보여집니다.회원입력순서ID암호2강감찬56784김좌진efgh3이순신abcd1홍길동1234이번에는 Index에서 가장 많이 사용하는 BTree Index를 살펴보겠습니다. Index는 보통 테이블의 자료를 빠르게 검색하기 위해 생성합니다. 1개의 Table 위에 N개의 Index를 생성할 수 있습니다.1) 회원 테이블의 ID를 KEY로 하는 Index를 생성한다고 가정하면 아래와 같은 Index 구조를 가집니다.회원_ID_IndexID(KEY)Table 위치 값강감찬XXX김좌진XXX이순신XXX홍길동XXXIndex는 KEY의 순서(오름차순 or 내림자순)로 정렬되어 있습니다. 그러므로 N개의 KEY를 지정해 Inedx를 생성하면 N개의 KEY 순서대로 정렬됩니다. 그렇다면 BTree Index는 왜 정렬되어 있을까요? 자료를 찾는 속도가 빠른 것과는 어떤 관계가 있을까요?자료 구조를 조금이라도 공부했다면 이미 BTree라는 이름에서 눈치채셨을 겁니다. Btree Index는 이진검색(Binary Search)에 기반을 두고 있습니다. Binary Search는 자료가 정렬되어 있는 상태에서 자료의 절반 위치를 찾아가는 구조입니다. (처음 전체의 절반, 절반의 절반 , 그 절반의 절반) 전체를 읽을 때보다 빠르게 원하는 값을 찾을 수 있고, 자료를 읽어내는 속도도 빨라집니다. 이렇게 해서 Index가 생성되어 있다면 Index에서 값을 빠르게 찾을 수 있고, 이 값이 위치한 Table의 레코드를 바로 접근해 원하는 값을 가져올 수 있게 됩니다. Index에서 원하는 값을 빠르게 찾을 수 있기 때문에 Index를 생성할 때 속성(UNIQUE or NON UNIQUE)을 설정해 중복 허용 여부를 지정할 수 있습니다. Index와 Table관계를 표시하면 아래와 같습니다.회원_ID_IndexID(KEY)Table 위치 값강감찬2김좌진4이순신3홍길동1▼회원입력순서ID암호1홍길동12342강감찬56783이순신abcd4김좌진efghPrimary Key만약 ID의 컬럼 속성을 NOT NULL로 설정하면 중복이 되지 않고 값을 항상 입력합니다. ID의 무결정을 보장하고, 자료도 빠르게 찾을 수 있게 되는데요. 방법은 크게 두 가지로 설정할 수 있습니다. 하나는 Unique Index 와 NOT NULL을 사용하는 것이고, 다른 하나는 Primary Key를 지정하는 것입니다.2) 그렇다면 우리는 어떤 것을 지정하는 것이 좋을까요? 사실 DB 특성과 Table특성, 용도에 따라 달라지기 때문에 정답은 없지만 일반적으로 Primary Key를 지정합니다. Primary Key를 지정하는 건 몇 가지 이유가 있습니다. 첫째, 논리적으로 Primary Key를 지정해 Table의 기준을 알 수 있습니다. 둘째, 거의 모든 DB가 같은 조건(Index가 여러 개 있을 경우)이라면 Primary Key를 우선적으로 사용합니다. 마지막으로, 특정 DB는 Table(MySQL InnoDB Table)이 Primary Key로 정렬되고, 이것이 위치 값으로 사용되면 다른 Index를 쓰는 것보다 속도가 빠릅니다. 그러므로 가능한 Primary Key를 사용하는 것이 좋고, 그 외의 경우엔 Index를 사용하면 됩니다. Conclusion지금까지 OLTP 처리를 할 때의 기본적인 회원 Table 구조와 문제점 및 해결 방안 , 간단한 Index 및 Primary Key를 알아봤습니다. 다음 글에서는 조금 더 확장된 개념인 단일 Table을 Select하는 법을 다뤄보겠습니다. 뭐든 기초가 중요하니까요. 하하.. 참고 1) Oracle Bitmap Index의 경우 2개 테이블을 연결하여 1개의 Index를 생성할 수도 있습니다. 2) Primary Key는 NOT NULL컬럼만 지정 가능합니다. 글한석종 부장 | R&D 데이터팀hansj@brandi.co.kr브랜디, 오직 예쁜 옷만#브랜디 #개발문화 #개발팀 #업무환경 #인사이트 #경험공유
조회수 1126

Google I/O 2018

안녕하세요, Hyper-X에서 AI Camera Picai를 개발 중인 Android 개발자, Trent 입니다. 저는 지난 5월 8일부터 5월 10일까지 JH 님, Evan 님과 함께 다녀온 Shoreline Amphitheatre 에서 열렸던 Google I/O 2018 에 대해서 전하려고 합니다. Google I/O는 Mountain View, California에서 매년 6월에 열리는 Developer Festival로서, Sundar Pichai의 Google Keynote를 시작으로 Google의 새로운 기술들과 프로덕트를 선보이는 Session들이 3일에 걸쳐 진행되었습니다. 놀라운 AI 기술의 발전이 돋보였던 올해의 행사였습니다.SessionsKeynoteSundar Pichai의 Keynote로 시작된 올해의 행사에선 AI 기술의 발전과 그 활용이 단연 돋보였습니다. Google Duplex 가 Keynote의 가장 큰 화제였는데요, Google Assistant가 직접 헤어샵이나 식당 같은 업체에 전화하여 예약을 수행해주는 기능입니다. ‘음…‘같은 소리들을 포함하며 매우 자연스럽게 종업원과 전화를 하는 모습을 보였는데요, 어려운 질문들도 척척 대답하는 모습이 놀라웠고, Google의 ML 기술에 놀라움을 금치 못했습니다.또한 Google의 독보적인 AI 기술은 Google의 기존 서비스들에도 큰 변화와 개선점들을 가져왔는데요, Gmail 의 Smart Compose 기능이 그 중 하나입니다. 이메일 작성 시 문장 전체를 AI가 autocorrect 해주는 기능인데요, 반복적인 이메일 업무를 획기적으로 줄일 수 있을 것으로 기대되었습니다. 역시 Google의 엄청난 양의 데이터를 통해 이뤄낸 기술로 보입니다. 그 외에도 Google News의 자동 뉴스 큐레이션 시스템, Google Lens를 활용한 Google Maps의 AR 기능 등으로 기존 서비스들에 큰 변화를 선도해가는 면모를 보였습니다.Android P는 Adaptive Battery, Adaptive Brightness, App Actions, App Slices 등의 새로운 AI 기반 기능들을 Android에 가져왔습니다. 배터리를 30% 절약하고, 밝기를 자동으로 조절해주며, 시간 및 행동에 따라 연관된 앱들을 추천해주는 등 전반적으로 Android가 매우 똑똑해지는 부분을 보여 줬습니다. 이런 직관적인 AI 를 활용한 API 를 활용하면, 앱 개발자가 효율적으로 자기 앱의 접근성을 높일 수 있을 것으로 보입니다.또한 Android P 는 소소한 UX 개선 점들과 더불어 스마트폰 중독 방지 기능들을 탑재했습니다. 서양에서는 과도한 스마트폰 사용이 많은 사회적 문제가 되고 있는데요, 이를 방지하기 위해 App들에서 보낸 시간을 트래킹하고, App 시간 제한을 스스로 설정한다던가, 핸드폰을 뒤집어서 중요한 연락처의 전화가 아니면 받지 않는 등의 기능을 탑재하였습니다.What’s new in AndroidAndroid App Bundle 이 소개되었습니다. 하나의 패키지를 Google Play에 업로드 함을 통해 Android 디바이스가 필요한 리소스만 다운받을 수 있게 해주는 시스템인데요, 이미 Twitter, LinkedIn 등의 어플리케이션에 적용되어 20% 가 넘는 APK 사이즈 개선을 이뤄냈다고 합니다. 저희 팀이 개발 중인 Picai에도 APK 사이즈 문제가 있는데, 이를 통해 해결 가능할 것이라 생각하고 큰 기대를 하는 중입니다. 차후 버전인 Android Studio 3.2 버전부터 지원합니다.Android Jetpack 이 소개되었습니다. Support Library, Architecture Components, KTX 등의 라이브러리를 통합한 모양새 인데요, 이와 함께 AndroidX 로의 패키지 명 변경이 이뤄지었습니다. 그 외에도 새로운 Navigation 라이브러리, WorkManager 라이브러리 등이 소개 되었습니다. Google의 새로운 Android 개발 Best Practice 제시라고 할 수 있겠습니다. Picai에서 이미 적극적으로 사용하던 기술들이라 큰 감흥은 없었는데요, Google이 직접 나서서 Android 개발자 에코시스템을 정리하려는 노력은 좋았습니다.또한 Kotlin의 전반적인 지원 확대와 다양한 라이브러리들에 대한 소식, Android Studio 의 많은 내부 변경 및 Energy Profiler, Google Assistant와 관련된 다양한 API 들 제공, Android P에 변경된 Background 카메라 및 마이크 권한 제한 및 ImageDecoder 등에 대한 뉴스 및 다양한 안드로이드 최적화에 관한 세션이 있었습니다. 특히 Android Testing 관련 세션이 매우 인상깊었는데요, 모든 Android 테스팅에 관련된 불편함을 해결해 줄걸로 기대했지만 아쉽게도 런칭이 아직 안됬는지, 컨퍼런스 밖에서는 자취를 찾을 수 없었습니다... And MoreFirebase ML Kit 및 TFLite(TensorFlow Lite) 에 대한 발표가 인상깊었습니다. 머신러닝에 대한 접근성을 높여 어떤 개발자라도 ML을 활용한 콘텐츠를 쉽게 만들게 할 수 있도록 노력하는 모습이 돋보였습니다. 컨퍼런스 후 팀원들과 함께 자세하게 검토를 해보았으며, 아직 여러가지 제약사항이 있어 적극적으로 쓰고 있진 않지만, 앞으로의 간편한 ML 활용에 대한 기대를 불러일으키는 세션들이었습니다.Google의 새로운 Cross-Platform Framework Flutter 에 대한 세션도 참가하였는데, 개발 난이도가 쉬워 보이고 좋은 애니메이션의 UI Component 들이 제공됨은 동의 함에도 기능 분리 적인 면에서 노력이 많이 필요하겠다는 생각이 들었습니다. Hyper-X의 여러 팀들에서 도입을 검토로 하고 있지만, 아직 실무에서 적용하기는 시기 상조로 보였습니다.Snapchat Camera API 에 대한 설명을 들었는데, 기기 및 유저 데이터 기반으로 두 버전의 Camera API 및 캡쳐 메커니즘을 전부 지원하는 백엔드를 세세히 설계한 부분이 매우 인상 깊었으며, 차후 Picai에 직접 적용해보고 싶다는 생각을 가지게 되었습니다. 특히 관련하여, Fragmentation이 심한 Android Camera의 Testing을 어떻게 진행하나 궁금하여 강연 후 연사에게 찾아가 여쭤보았는데요, 만족할 만한 수준의 대답은 아니었지만 향후 Picai를 개발 함에 있어 자신감을 가질 수 있게 하는 답변을 받았습니다.Office Hour개인적으로 Google I/O 참가하면서 기대했던 것은 Office Hour 인데요, Jake Wharton, Kotlin 개발팀, Flutter 팀, TFLite 팀 등을 직접 만나서 질문을 할 수 있었다는 것이 기대되었습니다. Kotlin 개발팀과 바람직한 Kotlin 코드 스타일(Effective Kotlin 유무) 및 Jetbrains가 지향하는 패러다임(FP vs OOP), Kotlin Native의 런칭 일정 및 Coroutine 후 추가 목표 피쳐 등에 대해 토의하였으며, Flutter 팀에게는 Dart 채택 이유와 Flutter가 적합한 어플리케이션 타입이 무엇이냐에 대해 물었고, TFLite 팀에게는 회사 동료의 ML에 관한 질문을 슬랙으로 전달하고 답변 받는 등 뜻깊은 시간을 보냈습니다. Google I/O TipsUber 사용법을 숙지하라Silicon Valley 답게 차를 렌트하지 않은 경우 Uber를 통해 대부분 이동하게 되는데, Shoreline Amphitheatre 근처에서는 주차가 금지되어서 특정한 Uber 존으로 이동하여 차를 잡아야 합니다. 이 위치를 인지 못하고 앱만 보면서 돌아다니게 되면 길을 잃기 쉬우니, 주의하여 미리 탑승 존을 인지하면 좋습니다. 특히 야간에는 사람이 몰려서, 주의하여야 합니다. 오히려 더 아래쪽으로 내려와서, Google Campus 내에서 잡는 게 좋을 수도 있습니다.또한 Uber 운전사한테 얻은 정보인데요, Ride-sharing을 하는 Uber 플랜을 사용하면 운전사들이 쉽게 취소한다고 하니, 조금 비싸더라도 개인으로 탑승하는 Uber 플랜을 사용하는 것이 좋다고 합니다.복장을 조심하라(?)캘리포니아는 6월에 더울때는 엄청 덥고, 추울때는 엄청 춥습니다. 특히 야외에서 오래 돌아다녀야 하기 때문에, 충분한 대비가 필수 입니다. 후디같은 옷을 입으시거나, 얇은 외투를 입는 등 충분히 준비해가면 좋습니다. 저는 행사장에서  CODE 가 젹혀진 후디를 구입해서, 매일 입고 다녔는데요, 매우 유용했습니다. 선크림 같은게 제공되긴 하지만, 그래도 제때 실내에서 휴식을 취하고 물을 많이 마시는 것이 좋습니다.마치며행사장을 돌아다니며 구글의 생태계에 푹 빠져 볼 수 있었던, 뜻깊은 경험이었습니다. 특히 그들이 곧 완성되고 릴리즈 된다고 자신하는 새로운 기능들은 상상하지 못했던 것들이라 놀라웠고, 이 시점에 직접 볼 수 있다는 것이 감사했습니다. Hyperconnect에서도 Mobile AI의 심화된 적용을 위해 많은 노력을 하고 있는데요, Azar 및 새로 시도하고 있는 Picai 같은 앱들을 통해 더 특별한 가치를 제공할 수 있도록 노력하고 있으니, 많은 기대 바랍니다!링크Android PApp BundleAndroid JetpackAndroidXML KitTFLiteFlutter#하이퍼커넥트 #개발자 #이벤트 #구글 #참여후기 #꿀팁 #인사이트 #이벤트참여 #미국 #캘리포니아
조회수 1574

StyleShare Engineering Blog?!

변정훈님 강의 모습생각해보기한 번도 생각해본 적이 없다! 왜 글을 작성해야 하는가?! 왜냐하면, 우리는 글로 먹고사는 사람도 아니고, 수려한 글솜씨도 없기 때문에?! 하지만, 이미 우리 사회는 PR의 시대를 뛰어넘어 미디어의 홍수에서 살아가고 있고, 매우 쉽게 무의식적으로 많은 글을 읽고 있다.하지만, 우리가 글을 작성하기 위해서 얼마나 많은 준비가 되어 있을까? 이 글을 쓰고 있는 필자 역시 글을 써본 경험이 거의 없다. 특히 회사의 이름을 걸고 글을 쓴다는 것은 매우 부담스러운 일이다.그래서 우리는 변정훈[Outsider’s Dev Story]님을 초대하여, 그분이 생각하는 블로그 일상과 엔지니어링 블로그에 대한 생각 공유의 시간을 가져보았다.엔지니어링 블로그회사 블로그 운영을 해보았는가?아쉽게도 변정훈 님도 회사 블로그를 운영해본 적은 없다고 하신다. 그 원인을 다음과 같은 이유로 해석을 하였다.주제가 많지 않다.개발보다 우선순위가 떨어진다.누구나 처음부터 글을 잘 적을 수 있는 건 아니다.그렇다. 이 글을 쓰는 중에도 위와 공감할 수 있는 부분이 적지 않다.우선 글을 많이 써보지 못한 필자로서도 어떤 글을 적어야 할지 난감하게 느껴지고, 업무 중에서도 중요도가 떨어지는 것은 분명하다. 마지막으로 주제 선정부터 매우 어렵게 느껴진다.그런 이유로 글쓰기를 즐겨 하시는 변정훈 님 조차 회사 블로그 운영을 잘 이끌어 본 적이 없다고 하신다.변정훈 님의 블로그는 2007년 부터 총 1,300여개 글이 게시되어 있다고 한다.왜 우리는 블로그를 운영하려 하는가?여러 가지가 있겠지만, 필자가 가장 공감한 부분은 이 부분이었다.팀 내 지식/경험 공유잠재적 입사자에게 기술 스택 및 문화 공유팀 전체의 실력 향상그동안 개발일을 해오면서, 몇 년 동안 풀리지 않는 큰 숙제 중에 하나가 좋은 개발자를 찾는 것이었다. 항상 사람을 찾는 것이 어렵다. 좋은 사람의 기준이 높아서인지 더 좋은 기업이 많아서인지 알 수는 없지만, 일하면서 느낀 가장 어려운 문제 중에 하나이다. 결국, 내부의 인력을 더 좋은 사람으로 만들고, 외부의 좋은 사람과도 교류의 장을 만들 수 있다는 희망을 품을 수 있게 되는 것이다.글 작성의 문턱을 어떻게 낮춰야 할까?좋은 점은 쉽게 공감이 되지만, 언제나 가장 어려운 것은 실천이 아닐까 싶다. 특히 회사에서 업무로 이런 일이 발생된다면, 많은 사람들이 엄청난 부담감을 가질 것이고, 결국 회사 엔지니어링 블로그는 대문만 남은 유명무실한 블로그가 될 가능성이 높다.그래서 변정훈 님은 이렇게 제안하셨다.월 1개 보다 적어도 된다.주제를 계속해서 제안하고 만들어 내야 한다.돌아가면서 작성한다.챙겨주는 사람이 필요하다.글도 리뷰하는게 좋다.부담감은 의도적으로 줄여야 …특히 변정훈님은 부담감을 줄이는 방법에 대해서, 팀 공유를 해주셨는데 잠시 소개하면 다음과 같다.나보다 모르는 사람 — 나 — 나보다 잘하는 사람언제나 어떤 기술에 대하여, 나보다 잘 모르는 사람과 나보다 잘 하는 사람이 있다는 것을 인지하고, 나보다 못하는 사람을 위해서 글을 작성한다는 것이다. 그러다 나보다 잘하는 누군가가 어쩌다 피드백을 준다면 오히려 매우 감사하게 새로운 지식을 터득하게 된다는 것이다. 역시 모든일에는 긍정적인 마인드가 중요하다. 세상 어딘가에는 나의 작은 지식이라도 필요로하는 사람들이 분명히 있을테니, 작은 용기를 가지고 세상에 누군가를 위해서 작성한다면, 세상은 분명 아름다워질 것이다.좋은 글, 좋은 주제란 무엇일까?사실 가장 어려운 이야기일지도 모른다. 변정훈님은 이런 내용을 좋다고 표현하셨는데, 잠시 정리하면 다음과 같다.개발팀의 문화어떻게 일하는가?프로젝트 수행 회고실패기개인적으로 실패기가 가장 적기 어려운 글이라고 생각한다. 하지만, 누군가에게는 가장 소중한 경험이 될지도 모르니, 간접경험의 공유는 특히 소중한 것일 수 있다.만약 회사 블로그의 글이 회사 내/외부의 사람들에게 지식 공유와 전달이 목적이라면, 그리고 좋은 문화를 계속 가지고 유지하기 위해서라면, 실패기가 어쩌면 가장 소중한 경험의 공유가 아닐까 생각해본다.질문과 답변을 통한 소통의 시간마지막으로 이 날 소개 받은 좋은 글의 흐름이란 다음과 같았다.하고자 했던 일 (Context)경험한 문제 사황 정리(격리된 상황)시도해 본 방법(내가 아는 지식)왜 동작이 안되는가? 왜 동작하는가?(가설)문제 상황 재현예제 코드관련 링크개념 설명지금까지 적은 이 글을 위의 원칙대로 다시 한번 살펴본다. 부족한 부분이 있는지, 수정할 부분이 있는지…이제 부터 회사 블로그를 더욱더 적극적으로 운영해보자!!!#스타일쉐어 #개발팀 #조직문화 #블로그 #기업문화 #사내복지

기업문화 엿볼 때, 더팀스

로그인

/